Patents by Inventor Leon A. Newman

Leon A. Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080240183
    Abstract: The laser tube housing of a CO2 slab laser is provided with a cooling system in which coolant fluid tubes are inserted into hollowed out portions formed in the longitudinal sidewalls of the laser tube housing; mounting the coolant fluid tubes in this way provides for enhanced cooling and increased stiffness of the laser tube housing. Also, a cooling system is provided for the laser's electrode assembly that relies on a manifold system that is mounted on a longitudinal sidewall of the laser tube housing to route coolant fluid through the sidewall to the electrode assembly; sidewall flow of the coolant fluid enables the end flanges of the laser tube housing to be remove without disturbing either the electrodes or the optical resonator of the laser.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 2, 2008
    Inventors: Leon A. Newman, Christian J. Shackleton, Adrian Papanide
  • Publication number: 20080205475
    Abstract: Through the use of a relatively inexpensive third mirror on a novel folded hybrid unstable resonator configuration, the optimum output coupling for a given laser design can be explored quickly and easily with a minimum of intracavity mirror alignment. No changes in either the radii of curvature of the three cavity optics or their spacing are required for this exploration. In addition to providing techniques for purposefully and systematically introducing mirror edge effects or avoiding edges effects altogether, the invention provides that output beams of different width can be advantageously explored in a relatively simple and straightforward manner. The invention provides that higher geometric magnification cavity designs may be made compatible with low diffraction output coupling in a configuration that uses only three totally reflecting optics.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 28, 2008
    Inventors: Peter P. Chenausky, Lanny Laughman, Eric R. Mueller, Leon A. Newman, Vernon A. Seguin, Christian J. Shackleton
  • Publication number: 20080002751
    Abstract: A thin film polarizer (TFP) and a half-wave CdTe electro-optical crystal are utilized to achieve a higher damage threshold in Q-switching CO2 lasers for material processing applications. Half-wave CdTe electro-optical modulators can be used without the arcing and corona problems typically associated with the higher drive voltage by placing low dielectric constant insulators (such as BeO) around the CdTe crystal. Doubling the voltage placed across a CdTe crystal enables the crystal to function as a half-wave phase retarder EO switch with the same dimensions as a crystal functioning as a quarter-wave EO modulator. These half-wave EO switches can be used with TFPs to shape the output pulses, as well as to direct alternate pulses of repetitively pulsed super pulsed slab lasers to alternate scanners, thereby doubling the output of laser hole drilling systems.
    Type: Application
    Filed: July 6, 2006
    Publication date: January 3, 2008
    Inventors: Gongxue Hua, Vernon Seguin, Leon A. Newman, Eric R. Mueller
  • Publication number: 20070279035
    Abstract: An RF impedance-matching transformer for matching the output impedance of an RF amplifier to the discharge of a gas-discharge laser includes upper and lower dielectric plates arranged face-to-face and bonded together. A primary U-shaped strip winding is embedded in the bonded surface of one of the dielectric plates. A secondary strip-winding is formed on an exposed surface of the upper dielectric plates. A ground-plane electrode formed on an exposed surface of the lower dielectric plate. An electrical connector connects one end of the secondary strip-winding to the ground-plane electrode via a via-hole extending through the dielectric plates. The other end of the secondary strip-winding can be connected to the laser.
    Type: Application
    Filed: May 23, 2007
    Publication date: December 6, 2007
    Inventors: W. Shef Robotham, Frederick W. Hauer, Leon A. Newman
  • Patent number: 7199330
    Abstract: Multiple laser beams, each having a shape such as a Gaussian profile, can be incoherently combined to obtain a shaped, flat top laser beam. The combined laser beams can provide power levels necessary for material processing applications such as annealing, drilling, and cutting, while minimizing the amount of unused power. The lasers can be positioned in an array in order to shape the flat top beam, and can be staggered in position where necessary to give each output beam an equal beam path length. The relative frequencies and/or powers of the lasers can be adjusted to control the flatness and stability of the incoherently combined beam.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: April 3, 2007
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, Leon A. Newman, Vernon Sequin
  • Patent number: 7113529
    Abstract: An electro-optical switch includes an optical assembly arranged to transmit laser-radiation. The optical assembly comprises an active optical crystal. On one of two opposite surfaces of the crystal is an optical window formed from a material having a refractive index lower than the material of the crystal. Heat deposited, as a result of transmission of the laser-radiation, at the surface of the crystal in contact with the widow is transferred to the window, thereby reducing the potential for optical damage to the crystal surface. The window is sufficiently thick that it has an odd integer multiple of quarter-wavelengths optical thickness at a wavelength about equal to a wavelength of the laser-radiation, thereby behaving as an antireflection device for the crystal at that wavelength. In one embodiment of the optical assembly, the active optical crystal is a cadmium telluride crystal and the window is formed from cesium bromide.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 26, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, R. Russel Austin, Anthony DeMaria
  • Patent number: 7058093
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 6, 2006
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. DeMaria, Leon A. Newman, Robert Henschke
  • Patent number: 7046709
    Abstract: A pulsed, Q-switched, waveguide CO2 laser includes a plurality of waveguide channels formed in a block of a beryllium oxide ceramic material and is operated at a wavelength between about 9.2 and 9.7 micrometers. The laser has an output power up to 55% greater than that of a similarly configured laser, operated at the same wavelength and pulse conditions, but wherein the waveguide channels are formed in a block of an alumina ceramic material.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: May 16, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, John Kennedy
  • Patent number: 7039079
    Abstract: A laser includes a gain medium located in a laser resonator. The gain medium generates plane polarized radiation plane polarized in a first polarization orientation. An electro-optical switch is located in the resonator. When the switch is activated the polarization plane of the laser radiation is rotated to a second orientation after making a forward and a reverse pass through the optical switch. When the switch is deactivated, the polarization orientation of the forward and reverse transmitted laser radiation remains about the same. A polarization selective device is located in the resonator between the electro-optical switch and the gain medium. The polarization selective device is arranged to permit circulation in the resonator of laser radiation in the first polarization orientation, and to restrict circulation of laser radiation in the second polarization orientation. The Gain medium is energized and the switch activated to allow energy to build in the gain medium.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: May 2, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, John Kennedy, Joel Fontanella, Anthony DeMaria
  • Publication number: 20060045150
    Abstract: The quality of pulses output from laser systems such as super-pulsed CO2 slab lasers can be improved using half-wavelength electro-optic modulators (EOMs), in combination with thin film polarizers (TFPs). A voltage applied across a CdTe crystal of the EOM rotates the polarization of a pulse passing through the EOM by 90°. The polarization determines whether the pulse passes through, or is redirected by, the TFP. The voltage applied to the crystal can be pulsed to prevent a drop in charge, which could allow radiation to leak to the application. A totem pole switch used to apply voltage to the EOM can receive a pulsed voltage for improved performance. Directing by the EOM allows pulses to be clipped at the front/back end(s), split into portions, and/or directed to separate scanners. Directing pulses or pulse portions to different scanners can increase the output of systems such as hole drilling systems.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Inventors: Leon Newman, John Kennedy, Joel Fontanella, Phillip Gardner
  • Publication number: 20050157762
    Abstract: Multiple laser beams, each having a shape such as a Gaussian profile, can be incoherently combined to obtain a shaped, flat top laser beam. The combined laser beams can provide power levels necessary for material processing applications such as annealing, drilling, and cutting, while minimizing the amount of unused power. The lasers can be positioned in an array in order to shape the flat top beam, and can be staggered in position where necessary to give each output beam an equal beam path length. The relative frequencies and/or powers of the lasers can be adjusted to control the flatness and stability of the incoherently combined beam.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Inventors: Anthony DeMaria, Leon Newman, Vernon Seguin
  • Publication number: 20050105581
    Abstract: A pulsed, Q-switched, waveguide CO2 laser includes a plurality of waveguide channels formed in a block of a beryllium oxide ceramic material and is operated at a wavelength between about 9.2 and 9.7 micrometers. The laser has an output power up to 55% greater than that of a similarly configured laser, operated at the same wavelength and pulse conditions, but wherein the waveguide channels are formed in a block of an alumina ceramic material.
    Type: Application
    Filed: November 18, 2003
    Publication date: May 19, 2005
    Inventors: Vernon Seguin, Leon Newman, John Kennedy
  • Publication number: 20050069007
    Abstract: A simultaneously super pulsed Q-switched CO2 laser system for material processing comprises sealed-off folded waveguides with folded mirrors that are thin film coated to select the output wavelength of the laser. The system also comprises a plurality of reflective devices defining a cavity; a gain medium positioned within the cavity for generating a laser beam; a cavity loss modulator for modulating the laser beam, generating thereby one or more laser pulses; a pulsed signal generation system connected to the cavity loss modulator for delivering pulsed signals to the cavity loss modulator thereby controlling the state of optical loss within the cavity; a control unit connected to the pulsed signal generation system for controlling the pulsed signal generation system; and a pulse clipping circuit receptive of a portion of the laser beam and connected to the pulsed signal generation system for truncating a part of the laser pulses.
    Type: Application
    Filed: October 15, 2004
    Publication date: March 31, 2005
    Inventors: John Kennedy, Richard Hart, Lanny Laughman, Joel Fontanella, Anthony Demaria, Leon Newman, Robert Henschke
  • Patent number: 6826204
    Abstract: A simultaneously super pulsed Q-switched CO2 laser system for material processing is disclosed. The system comprises sealed-off folded waveguides with folded mirrors that are thin film coated to select the output wavelength of the laser. The system also comprises a plurality of reflective devices defining a cavity; a gain medium positioned within the cavity for generating a laser beam; a cavity loss modulator for modulating the laser beam, generating thereby one or more laser pulses; a pulsed signal generation system connected to the cavity loss modulator for delivering pulsed signals to the cavity loss modulator thereby controlling the state of optical loss within the cavity; a control unit connected to the pulsed signal generation system for controlling the pulsed signal generation system; and a pulse clipping circuit receptive of a portion of the laser beam and connected to the pulsed signal generation system for truncating a part of the laser pulses.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: November 30, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Publication number: 20040179775
    Abstract: An electro-optical switch includes an optical assembly arranged to transmit laser-radiation. The optical assembly comprises an active optical crystal. On one of two opposite surfaces of the crystal is an optical window formed from a material having a refractive index lower than the material of the crystal. Heat deposited, as a result of transmission of the laser-radiation, at the surface of the crystal in contact with the widow is transferred to the window, thereby reducing the potential for optical damage to the crystal surface. The window is sufficiently thick that it has an odd integer multiple of quarter-wavelengths optical thickness at a wavelength about equal to a wavelength of the laser-radiation, thereby behaving as an antireflection device for the crystal at that wavelength. In one embodiment of the optical assembly, the active optical crystal is a cadmium telluride crystal and the window is formed from cesium bromide.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Inventors: Vernon Seguin, Leon Newman, R. Russel Austin, Anthony DeMaria
  • Publication number: 20040179558
    Abstract: A laser includes a gain medium located in a laser resonator. The gain medium generates plane polarized radiation plane polarized in a first polarization orientation. An electro-optical switch is located in the resonator. When the switch is activated the polarization plane of the laser radiation is rotated to a second orientation after making a forward and a reverse pass through the optical switch. When the switch is deactivated, the polarization orientation of the forward and reverse transmitted laser radiation remains about the same. A polarization selective device is located in the resonator between the electro-optical switch and the gain medium. The polarization selective device is arranged to permit circulation in the resonator of laser radiation in the first polarization orientation, and to restrict circulation of laser radiation in the second polarization orientation. The Gain medium is energized and the switch activated to allow energy to build in the gain medium.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Inventors: Vernon Seguin, Leon Newman, John Kennedy, Joel Fontanella, Anthony DeMaria
  • Patent number: 6788722
    Abstract: The above discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by a laser of the present invention. In accordance with the present invention the laser comprises a housing defining a plurality of compartments therein, a folded waveguide disposed within the housing, the folded waveguide defining a plurality of channels having a substantially rectangular cross section for guiding a laser beam, a plurality of electrodes disposed in the plurality of compartments and juxtaposed along opposite surfaces of the waveguide and at least one power supply connected to the plurality of electrodes. The channels having a prescribed width to height ratio for a prescribed channel length for a given Fresnel number. At least one optical housing is provided. The optical housing is mounted to the laser housing, the optical housing including a plurality of beam turning mechanisms disposed within a plurality of compartments accessible for adjusting the beam turning mechanisms.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 7, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Leon A. Newman, Anthony J. DeMaria
  • Patent number: 6784399
    Abstract: An EOM Q-switched CO2 laser produces bursts of laser pulses delivered at a high PRF such as 20-140 kHz and having a short high-power spike of about 80-150 ns followed by a lower-power tail of about 0.05-12.0 &mgr;s. The bursts and/or laser pulses can be shaped by controlling the RF pumping duty cycle, the delay between the onset of RF pumping and the initiation of Q-switching, the pulse repetition frequency, and/or the duration of the tail. The bursts of laser pulses can be adapted to facilitate machining of metal layers and/or layers containing materials having disparate vaporization temperatures and/or disparate melting points, such as FR4 or green ceramics.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: August 31, 2004
    Assignees: Electro Scientific Industries, Inc., Coherent, Inc.
    Inventors: Corey M. Dunsky, Hisashi Matsumoto, Richard S. Harris, John T. Kennedy, Vernon A. Seguin, Leon Newman
  • Publication number: 20040146075
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 29, 2004
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Patent number: 6697408
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: February 24, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke