Patents by Inventor Leon Henderson

Leon Henderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220126917
    Abstract: The invention relates to a method of reducing or preventing lateral oscillations of at least one connected vehicle unit of a vehicle combination, the method comprising providing one or more parameters associated with a setup of the vehicle combination; determining, based on the one or more parameters, one or more critical frequencies having critical rearward amplification of a motion variable between the leading vehicle unit and the at least one connected vehicle unit; monitoring a steering input to the leading vehicle unit; determining whether the steering input excites any of the one or more critical frequencies; and automatically triggering a countermeasure for reducing or preventing lateral oscillations of the at least one connected vehicle unit upon determining that the steering input excites any of the one or more critical frequencies.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 28, 2022
    Inventors: Thorsten Helfrich, Leon Henderson
  • Publication number: 20220126799
    Abstract: A control unit (130, 140) for controlling a heavy duty vehicle (100), wherein the control unit is arranged to obtain input data indicative of a desired wheel force (Fx, Fy) to be generated by at least one wheel (210) of the vehicle (100), and to translate the input data into a respective equivalent wheel speed or wheel slip to be maintained by the wheel (210) to generate the desired wheel force (Fx, Fy) based on an inverse tyre model (f?1) for the wheel (210), wherein the control unit (130, 140) is arranged to obtain the inverse tyre model in dependence of a current operating condition of the wheel (210), and wherein the control unit (130, 140) is arranged to control the heavy duty vehicle (100) based on the equivalent wheel speed or wheel slip.
    Type: Application
    Filed: October 11, 2021
    Publication date: April 28, 2022
    Applicant: VOLVO TRUCK CORPORATION
    Inventors: Adithya ARIKERE, Niklas FRÖJD, Leon HENDERSON, Sidhant RAY, Leo LAINE, Mats RYDSTRÖM
  • Publication number: 20220063575
    Abstract: A motion support device, MSD, control unit for a heavy duty vehicle, configured to control one or more MSDs associated with a wheel on the vehicle, wherein the MSD control unit is configured to be communicatively coupled to a vehicle motion management, VMM, unit for receiving control commands from the VMM unit comprising wheel speed and/or wheel slip requests to control vehicle motion by the one or more MSDs. The MSD control unit is configured to obtain a capability range indicating a range of wheel behaviors of the wheel for which the VMM unit is allowed to influence the behavior of the wheel by the control commands, monitor wheel behavior and to detect if wheel behavior is outside of the capability range, and trigger a control intervention function in case the monitored wheel behavior is outside of the capability range.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Leo Laine, Leon Henderson, Johan Lindberg, Adithya Arikere, Sidhant Ray
  • Patent number: 11235747
    Abstract: The present invention relates to a method for controlling a steering system of a vehicle (100). The steering system comprises individually controllable wheel torque actuators (103, 105) on a respective left (104) and right (106) steerable wheel of the vehicle, wherein the wheel torque actuators (103, 105) are controlled during a turning maneuver of the vehicle.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 1, 2022
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Björn Källstrand, Leo Laine, Leon Henderson, Patrick Volz
  • Publication number: 20220024432
    Abstract: The invention relates to a method of operating a vehicle (1) comprising at least a first vehicle retarding subsystem (3; 5; 13) controllable to retard the vehicle (1), and processing circuitry (15) coupled to the at least first vehicle retarding subsystem (3; 5; 13), the method comprising the steps of: acquiring (S10), by the processing circuitry (15) from the first vehicle retarding subsystem (3; 5; 13), at least one value indicative of current energy accumulation by the first vehicle retarding subsystem (3; 5; 13); and determining (S11), by the processing circuitry (15), a measure indicative of a retardation energy capacity currently available for retardation of the vehicle (1), based on: the acquired at least one value indicative of current energy accumulation by the first vehicle retarding subsystem (3; 5; 13); a predefined model of retardation energy accumulation by the first vehicle retarding subsystem (3; 5; 13); and a predefined limit indicative of a maximum allowed energy accumulation by the first ve
    Type: Application
    Filed: September 13, 2018
    Publication date: January 27, 2022
    Inventors: Kristoffer Tagesson, Leon Henderson
  • Publication number: 20210276614
    Abstract: The invention relates to a steering assembly (12) for a vehicle (10). The steering assembly (12) comprises a first steering actuator (14) and a second steering actuator (16). The first steering actuator (14) is adapted to be actuated in accordance with at least one signal issued from a motion control system (18) to control a steering angle of at least one steerable ground engaging member (20, 22) of the vehicle (10) to thereby control the steering of the vehicle (10). The first steering actuator (14) is associated with a first nominal steering capability, defining at least one limitation of at least one of the following: steering angle, steering angle rate and steering torque, for the at least one steerable ground engaging member (20, 22).
    Type: Application
    Filed: June 25, 2018
    Publication date: September 9, 2021
    Inventors: Leo Laine, Jan-Inge Svensson, Lionel Farres, Christian Oscarsson, Leon Henderson, Jose Vilca, Kristoffer Tagesson, Johanna Majqvist
  • Publication number: 20210237703
    Abstract: A brake control device (10) for delivering air under controlled pressure to a pneumatic brake actuator (BA), comprising an inlet port (51) coupled to a compressed air supply circuit, a working port (54) coupled to a service brake chamber (C2) of the brake actuator (BA), a venting port (56), first and second inlet solenoid valves (31,32) for selectively connecting inlet port(s) to the working port, first and second outlet solenoid valves (41,42) for selectively connecting the working port to venting port(s), a biased check valve (12), for coupling the working port to venting port(s), the brake control unit device further comprising first and second local electronic control units (21,22) for controlling independently first and second inlet solenoid valves and first and second outlet solenoid valves.
    Type: Application
    Filed: May 3, 2018
    Publication date: August 5, 2021
    Inventors: Leon Henderson, Christian Oscarsson, Leo Laine
  • Patent number: 10974705
    Abstract: The present invention relates to a wheel controller (108) for a vehicle (100), comprising a wheel slip calculation module (212) arranged to calculate a longitudinal wheel slip value for a wheel slip between a surface of the wheel (102) and a road surface thereof; a wheel force estimation module (214) arranged to estimate a longitudinal wheel force value for a wheel force between the surface of the wheel (102) and the road surface; a tire model generator (216) arranged to receive longitudinal wheel slip values from the wheel slip calculation module (212) and longitudinal wheel force values from the wheel force estimation module (214); said tire model generator (216) being configured to generate a model (300, 400) representing a relationship between the calculated longitudinal wheel slip and the estimated longitudinal wheel force by using at least three longitudinal wheel force values and three corresponding longitudinal wheel slip values; and a vehicle wheel capability module (218) arranged in communication wi
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 13, 2021
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Leo Laine, Leon Henderson, Mats Sabelström
  • Publication number: 20210078556
    Abstract: A control arrangement for a vehicle motion system including a braking function, comprising motion actuators with one or more brake actuators pertaining to the braking function, a first vehicle motion management controller (VMM1) and a second vehicle motion management controller (VMM2), forming a redundant assembly to control the braking function, wherein, in riding conditions, the first vehicle motion management controller controls the brake actuators with a current nominal expected braking performance, while the second vehicle motion management controller (VMM2) is in a waiting-to-operate mode, the control arrangement comprising a hot swap functionality in which the second vehicle motion management controller (VMM2) is configured to take over control of the brake actuators from the first vehicle motion management controller, with the current nominal expected braking performance, in a short time period (SWT) less than one second, preferably less than 0.5 second, preferably less than 0.
    Type: Application
    Filed: May 3, 2018
    Publication date: March 18, 2021
    Inventors: Leo Laine, Lionel Farres, Christian Oscarsson, Leon Henderson, Johanna Majqvist, Jose Vilca, Kristoffer Tagesson, Karthik Ramanan Vaidyanathan, Nicolas Soulier
  • Publication number: 20200290588
    Abstract: The present invention relates to a method for controlling a steering system of a vehicle (100).
    Type: Application
    Filed: October 10, 2017
    Publication date: September 17, 2020
    Inventors: Björn Källstrand, Leo Laine, Leon Henderson, Patrick Volz
  • Publication number: 20200281285
    Abstract: The present invention relates to motorcycling and devices that facilitate high speed cornering for motorcycle riders, particularly in motorcycle racing. Motorcycle riders lean into turns while cornering with increasing lean angles dependent on the speed and radius of the corner. Improved tire compounds allow increased cornering angles for riders. Riders typically provide support during cornering by dropping their knees and forearms to the ground. Prior art pads exist to protect riders during these cornering maneuvers but have the significant drawback of substantial friction between the ground and the pad. This friction slows the rider, impacts the cornering geometry and creates rider discomfort. The present invention seeks to solve these problems by providing a forearm and shin glider for motorcycle cornering. The claimed invention includes a deformable base with slits that allow secure and comfortable fit to the rider's arm or leg. An abrasion resistant casing is attached to the base.
    Type: Application
    Filed: May 3, 2020
    Publication date: September 10, 2020
    Inventor: Kevin Leon Henderson
  • Publication number: 20190313714
    Abstract: A motorcyclist's knee-roller comprises free rolling abrasion resistant balls incased, so as to be capable of rolling free when engaging the road or ground surface.
    Type: Application
    Filed: December 14, 2017
    Publication date: October 17, 2019
    Inventor: Kevin Leon Henderson
  • Publication number: 20190176784
    Abstract: The present invention relates to a wheel controller (108) for a vehicle (100), comprising a wheel slip calculation module (212) arranged to calculate a longitudinal wheel slip value for a wheel slip between a surface of the wheel (102) and a road surface thereof; a wheel force estimation module (214) arranged to estimate a longitudinal wheel force value for a wheel force between the surface of the wheel (102) and the road surface; a tire model generator (216) arranged to receive longitudinal wheel slip values from the wheel slip calculation module (212) and longitudinal wheel force values from the wheel force estimation module (214); said tire model generator (216) being configured to generate a model (300, 400) representing a relationship between the calculated longitudinal wheel slip and the estimated longitudinal wheel force by using at least three longitudinal wheel force values and three corresponding longitudinal wheel slip values; and a vehicle wheel capability module (218) arranged in communication wi
    Type: Application
    Filed: June 15, 2016
    Publication date: June 13, 2019
    Inventors: Leo Laine, Leon Henderson, Mats Sabelström