Patents by Inventor Leon J. Radziemski
Leon J. Radziemski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12218518Abstract: A method for wirelessly powering a device includes: acoustically coupling an acoustic transmitter to an external surface of a mammal at an approximate location of an implantable device disposed in the mammal; producing, with the acoustic source, acoustic energy having a frequency in a frequency range of about 0.5 MHz to about 3 MHz; receiving the acoustic energy with one or more transducers in the implantable device, the one or more transducers electrically connected to an electric circuit, the one or more transducers having a length in a length range of about 1 wavelength to about 10 wavelengths of the acoustic energy; converting, with the one or more transducers, the acoustic energy to electric energy; and providing the electric energy to a device electrically connected to the electric circuit.Type: GrantFiled: April 12, 2024Date of Patent: February 4, 2025Assignee: UltraPower, Inc.Inventors: Inder Raj S. Makin, Paul Jaeger, Leon J. Radziemski
-
Publication number: 20240348102Abstract: A method for wirelessly powering a device includes: acoustically coupling an acoustic transmitter to an external surface of a mammal at an approximate location of an implantable device disposed in the mammal; producing, with the acoustic source, acoustic energy having a frequency in a frequency range of about 0.5 MHz to about 3 MHz; receiving the acoustic energy with one or more transducers in the implantable device, the one or more transducers electrically connected to an electric circuit, the one or more transducers having a length in a length range of about 1 wavelength to about 10 wavelengths of the acoustic energy; converting, with the one or more transducers, the acoustic energy to electric energy; and providing the electric energy to a device electrically connected to the electric circuit.Type: ApplicationFiled: April 12, 2024Publication date: October 17, 2024Inventors: Inder Raj S. Makin, Paul Jaeger, Leon J. Radziemski
-
Patent number: 11336128Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: GrantFiled: October 23, 2021Date of Patent: May 17, 2022Assignee: UltraPower Inc.Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20220042950Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: ApplicationFiled: October 23, 2021Publication date: February 10, 2022Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Patent number: 11199522Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: GrantFiled: February 3, 2021Date of Patent: December 14, 2021Assignee: UltraPower Inc.Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20210181152Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: ApplicationFiled: February 3, 2021Publication date: June 17, 2021Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Patent number: 10948457Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: GrantFiled: May 7, 2020Date of Patent: March 16, 2021Assignee: UltraPower Inc.Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20200264137Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: ApplicationFiled: May 7, 2020Publication date: August 20, 2020Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Patent number: 10684260Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: GrantFiled: April 4, 2019Date of Patent: June 16, 2020Assignee: UltraPower Inc.Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Patent number: 10589108Abstract: A system for providing energy to a bio-implantable medical device includes an acoustic energy delivery device and a bio-implantable electroacoustical energy converter. The acoustic energy delivery device generates acoustic energy with a multi-dimensional array of transmitting electroacoustical transducers. The acoustic energy is received by one or more receiving electroacoustical transducers in the bio-implantable electroacoustical energy converter. The receiving electroacoustical transducers convert the acoustic energy to electrical energy to power the bio-implantable medical device directly or indirectly. An external alignment system provides lateral and/or angular positioning of an ultrasound energy transmitter over an ultrasound energy receiver. The acoustic energy transmitter alignment system comprises either or both x-y-z plus angular positioning components, and/or a substantially multi-dimensional array of transmitters plus position sensors in both the transmitter and receiver units.Type: GrantFiled: February 27, 2019Date of Patent: March 17, 2020Assignee: Piezo Energy Technologies LLCInventors: Leon J. Radziemski, Inder Raj Singh Makin, Harry Jabs, Juan Carlos Lopez Tonazzi
-
Publication number: 20190227035Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: ApplicationFiled: April 4, 2019Publication date: July 25, 2019Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20190192865Abstract: A system for providing energy to a bio-implantable medical device includes an acoustic energy delivery device and a bio-implantable electroacoustical energy converter. The acoustic energy delivery device generates acoustic energy with a multi-dimensional array of transmitting electroacoustical transducers. The acoustic energy is received by one or more receiving electroacoustical transducers in the bio-implantable electroacoustical energy converter. The receiving electroacoustical transducers convert the acoustic energy to electrical energy to power the bio-implantable medical device directly or indirectly. An external alignment system provides lateral and/or angular positioning of an ultrasound energy transmitter over an ultrasound energy receiver. The acoustic energy transmitter alignment system comprises either or both x-y-z plus angular positioning components, and/or a substantially multi-dimensional array of transmitters plus position sensors in both the transmitter and receiver units.Type: ApplicationFiled: February 27, 2019Publication date: June 27, 2019Inventors: Leon J. Radziemski, Inder Raj Singh Makin, Harry Jabs, Juan Carlos Lopez Tonazzi
-
Patent number: 10295500Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: GrantFiled: August 17, 2017Date of Patent: May 21, 2019Assignee: UltraPower Inc.Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Patent number: 10252066Abstract: A system for providing energy to a bio-implantable medical device includes an acoustic energy delivery device and a bio-implantable electroacoustical energy converter. The acoustic energy delivery device generates acoustic energy with a multi-dimensional array of transmitting electroacoustical transducers. The acoustic energy is received by one or more receiving electroacoustical transducers in the bio-implantable electroacoustical energy converter. The receiving electroacoustical transducers convert the acoustic energy to electrical energy to power the bio-implantable medical device directly or indirectly. An external alignment system provides lateral and/or angular positioning of an ultrasound energy transmitter over an ultrasound energy receiver. The acoustic energy transmitter alignment system comprises either or both x-y-z plus angular positioning components, and/or a substantially multi-dimensional array of transmitters plus position sensors in both the transmitter and receiver units.Type: GrantFiled: May 5, 2017Date of Patent: April 9, 2019Assignee: Piezo Energy Technologies LLCInventors: Leon J. Radziemski, Inder Raj Singh Makin, Harry Jabs, Juan Carlos Lopez Tonazzi
-
Publication number: 20170363581Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.Type: ApplicationFiled: August 17, 2017Publication date: December 21, 2017Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20170319858Abstract: A system for providing energy to a bio-implantable medical device includes an acoustic energy delivery device and a bio-implantable electroacoustical energy converter. The acoustic energy delivery device generates acoustic energy with a multi-dimensional array of transmitting electroacoustical transducers. The acoustic energy is received by one or more receiving electroacoustical transducers in the bio-implantable electroacoustical energy converter. The receiving electroacoustical transducers convert the acoustic energy to electrical energy to power the bio-implantable medical device directly or indirectly. An external alignment system provides lateral and/or angular positioning of an ultrasound energy transmitter over an ultrasound energy receiver. The acoustic energy transmitter alignment system comprises either or both x-y-z plus angular positioning components, and/or a substantially multi-dimensional array of transmitters plus position sensors in both the transmitter and receiver units.Type: ApplicationFiled: May 5, 2017Publication date: November 9, 2017Inventors: Leon J. Radziemski, Inder Raj Singh Makin, Harry Jabs, Juan Carlos Lopez Tonazzi
-
Patent number: 9764606Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure.Type: GrantFiled: March 13, 2017Date of Patent: September 19, 2017Assignee: UltraPower LLCInventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20170182852Abstract: Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure.Type: ApplicationFiled: March 13, 2017Publication date: June 29, 2017Inventors: Inder Raj S. Makin, Harry Jabs, Leon J. Radziemski
-
Publication number: 20150080639Abstract: A bio-implantable energy capture and storage assembly is provided. The assembly includes an acoustic energy transmitter and an acoustic energy receiver. The acoustic energy receiver also functions as an energy converter for converting acoustic energy to electrical energy. An electrical energy storage device is connected to the energy converter, and is contained within a bio-compatible implant for implantation into tissue. The acoustic energy transmitter is separate from the implant, and comprises a substantially 2-dimensional array of transmitters. The acoustic energy converter may also provide conditioned power directly to a load, connected to said energy converter.Type: ApplicationFiled: September 2, 2014Publication date: March 19, 2015Inventors: Leon J. Radziemski, Inder Raj Singh Makin
-
Patent number: 8974366Abstract: A bio-implantable energy capture and storage assembly is provided. The assembly includes an acoustic energy transmitter and an acoustic energy receiver. The acoustic energy receiver also functions as an energy converter for converting acoustic energy to electrical energy. An electrical energy storage device is connected to the energy converter, and is contained within a bio-compatible implant for implantation into tissue. The acoustic energy transmitter is separate from the implant, and comprises a substantially 2-dimensional array of transmitters. The acoustic energy converter may also provide conditioned power directly to a load, connected to said energy converter.Type: GrantFiled: September 2, 2014Date of Patent: March 10, 2015Assignee: Piezo Energy Technologies, LLCInventors: Leon J. Radziemski, Inder Raj Singh Makin