Patents by Inventor Leon Volfovsky

Leon Volfovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250087524
    Abstract: A process kit enclosure system includes walls and a retention device structure. The retention device structure includes a retention device post and a retention device fin. The retention device fin in a first position is disposed above and secures a process kit ring supported in the interior volume of the process kit enclosure system. The retention device fin is rotated from the first position to be in a second position to be outside a boundary of the process kit ring. The retention device post is aligned with and inserts into a recess formed by a top cover of the process kit enclosure system responsive to the retention device post being in the first position. The retention device post is misaligned with and blocked from inserting into the recess formed by the top cover responsive to the retention device post of the retention device structure being in the second position.
    Type: Application
    Filed: November 25, 2024
    Publication date: March 13, 2025
    Inventors: Helder Lee, Nicholas Michael Kopec, Leon Volfovski, Douglas R. McAllister, Andreas Schmid, Jeffrey Hudgens, Yogananda Sarode Vishwanath, Steven Babayan
  • Patent number: 12165905
    Abstract: A process kit enclosure system includes surfaces to enclose an interior volume, a first support structure including first fins, a second support structure including second fins, and a front interface to interface the process kit enclosure system with a load port of a wafer processing system. The first and second fins are sized and spaced to hold process kit ring carriers and process kit rings in the interior volume. Each of the process kit rings is secured to one of the process kit ring carriers. The process kit enclosure system enables first automated transfer of a first process kit ring carrier securing a first process kit ring from the process kit enclosure system into the wafer processing system and second automated transfer of a second process kit ring carrier securing a second process kit ring from the wafer processing system into the process kit enclosure system.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: December 10, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Helder Lee, Nicholas Michael Kopec, Leon Volfovski, Douglas R. McAllister, Andreas Schmid, Jeffrey Hudgens, Yogananda Sarode Vishwanath, Steven Babayan
  • Patent number: 12142503
    Abstract: A robotic object handling system comprises a robot arm, an image sensor, a first station, and a computing device. The computing device is to cause the robot arm to pick up an object on an end effector, cause the image sensor to generate sensor data of the object, determine at least one of (i) a rotational error of the object or (ii) a positional error of the object based on the sensor data, cause an adjustment to the robot arm to approximately remove at least one of the rotational error or the positional error, and cause the robot arm to place the object at the first station without at least one of the rotational error or the positional error.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: November 12, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nicholas Michael Kopec, Damon K. Cox, Leon Volfovski
  • Publication number: 20240021458
    Abstract: A calibration object is transferred from a processing chamber to an aligner station by one or more robot arms. The calibration object has a first processing chamber orientation in the processing chamber and a second orientation at the aligner station. A first characteristic error value associated with a transfer path between the processing chamber and the aligner is determined based on the first processing chamber orientation and the second orientation of the calibration object at the aligner station. In response to detecting an object at the aligner station to be transferred to the processing chamber along the transfer path, the object is aligned by the aligner station to be placed in the processing chamber according to a target processing chamber orientation based on a target aligner orientation as adjusted by the first characteristic error value determined for the transfer path between the processing chamber and the aligner station.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 18, 2024
    Inventors: Nicholas Michael Bergantz, Andreas Schmid, Leon Volfovski, Sanggyum Kim, Damon Cox, Paul Wirth
  • Patent number: 11842917
    Abstract: A process kit ring adaptor includes one or more upper surfaces and one or more lower surfaces. The one or more upper surfaces are configured to support a process kit ring. The one or more lower surfaces are configured to interface with an end effector. The process kit ring adaptor supporting the process kit ring is configured to be transported on the end effector within a processing system.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Leon Volfovski, Andreas Schmid, Denis Martin Koosau, Nicholas Michael Kopec, Steven Babayan, Douglas R. McAllister, Helder Lee, Jeffrey Hudgens, Damon K. Cox
  • Patent number: 11823937
    Abstract: A calibration object is retrieved, by a first robot arm of a transfer chamber, from a processing chamber connected to the transfer chamber and placed in a load lock connected to the transfer chamber. The calibration object is retrieved from the load lock by a second robot arm of a factory interface connected to the load lock and placed at an aligner station housed in or connected to the factory interface. The calibration object has a first orientation at the aligner station. A difference is determined between the first orientation and an initial target orientation at the aligner station. A first characteristic error value associated with the processing chamber is determined based on the determined difference. The first characteristic error value is recorded in a storage medium. The aligner station is to use the first characteristic error value for alignment of objects to be placed in the processing chamber.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: November 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nicholas Michael Bergantz, Andreas Schmid, Leon Volfovski, Sanggyum Kim, Damon Cox, Paul Wirth
  • Publication number: 20230307273
    Abstract: A robotic object handling system comprises a robot arm, an image sensor, a first station, and a computing device. The computing device is to cause the robot arm to pick up an object on an end effector, cause the image sensor to generate sensor data of the object, determine at least one of (i) a rotational error of the object or (ii) a positional error of the object based on the sensor data, cause an adjustment to the robot arm to approximately remove at least one of the rotational error or the positional error, and cause the robot arm to place the object at the first station without at least one of the rotational error or the positional error.
    Type: Application
    Filed: March 28, 2023
    Publication date: September 28, 2023
    Inventors: Nicholas Michael Kopec, Damon K. Cox, Leon Volfovski
  • Patent number: 11626305
    Abstract: A robotic object handling system comprises a robot arm, a non-contact sensor, a first station, and a computing device. The computing device is to cause the robot arm to pick up an object on an end effector, cause the robot arm to position the object within a detection area of the non-contact sensor, cause the non-contact sensor to generate sensor data of the object, determine at least one of a rotational error of the object relative to a target orientation or a positional error of the object relative to a target position based on the sensor data, cause an adjustment to the robot arm to approximately remove at least one of the rotational error or the positional error from the object, and cause the robot arm to place the object at the first station, wherein the placed object lacks at least one of the rotational error or the positional error.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nicholas Michael Kopec, Damon K. Cox, Leon Volfovski
  • Patent number: 11600580
    Abstract: Replaceable contact pads of end effectors are provided. The contact pads support substrates in electronic device manufacturing. The contact pad includes a contact pad head having a contact surface configured to contact a substrate, a shaft coupled to the contact pad head, the shaft including a shaft indent formed between an underside of the contact pad head and a shaft end, and a circular securing member received around the shaft and seated in the shaft indent and configured to secure the contact pad to the end effector body. End effectors including replaceable contact pads and maintenance methods are described, as are additional aspects.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Whitney Kroetz, Damon Keith Cox, Leon Volfovski, Jeffrey C. Hudgens, Balamurali Murugaraj
  • Patent number: 11211269
    Abstract: A method includes receiving, by a first loadlock chamber of the loadlock system, a first object from a factory interface via a first opening. The first object is transferred into the first loadlock chamber via a first robot arm. The factory interface is at a first state. The first loadlock chamber is configured to receive different types of objects. The method further includes sealing a first loadlock door against the first opening to create a first sealed environment at the first state in the first loadlock chamber and causing the first sealed environment of the first loadlock chamber to be changed to a second state. The method further includes actuating a second loadlock door to provide a second opening between the first loadlock chamber and a transfer chamber. The first object is to be transferred from the first loadlock chamber to the transfer chamber via a second robot arm.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 28, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew Paul Harbert, Michael C Kuchar, Nicholas Michael Bergantz, Leon Volfovski, Sivakumar Ramalingam, Karuppasamy Muthukamatchi, Douglas R McAllister
  • Publication number: 20210217650
    Abstract: A process kit ring adaptor includes one or more upper surfaces and one or more lower surfaces. The one or more upper surfaces are configured to support a process kit ring. The one or more lower surfaces are configured to interface with an end effector. The process kit ring adaptor supporting the process kit ring is configured to be transported on the end effector within a processing system.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Leon Volfovski, Andreas Schmid, Denis Martin Koosau, Nicholas Michael Kopec, Steven Babayan, Douglas R. McAllister, Helder Lee, Jeffrey Hudgens, Damon K. Cox
  • Patent number: 10964584
    Abstract: A process kit ring adaptor includes a rigid carrier. The rigid carrier includes an upper surface and a lower surface. The upper surface includes a first distal portion and a second distal portion to support a process kit ring. The lower surface includes a first region to interface with an end effector configured to support wafers and a solid planar central region to interface with a vacuum chuck.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 30, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Leon Volfovski, Andreas Schmid, Denis Martin Koosau, Nicholas Michael Kopec, Steven Babayan, Douglas R. McAllister, Helder Lee, Jeffrey Hudgens, Damon K. Cox
  • Publication number: 20210057256
    Abstract: A method for calibrating an aligner station of an electronics processing system is provided. A calibration is retrieved, by a first robot arm of a transfer chamber, from a processing chamber connected to the transfer chamber. The calibration object has a target orientation in the processing chamber. The calibration is placed, by the first robot art, in a load lock connected to the transfer chamber. The calibration is retrieved from the load lock by a second robot arm of a factory interface connected to the load lock. The calibration object is placed, by the second robot arm, at an aligner station housed in or connected to the factory interface. The calibration object has a first orientation at the aligner station. A difference is determined between the first orientation at the aligner station and an initial target orientation at the aligner station. The initial target orientation at the aligner station is associated with the target orientation in the processing chamber.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 25, 2021
    Inventors: Nicholas Michael Bergantz, Andreas Schmid, Leon Volfovski, Sanggyum Kim, Damon Cox, Paul Wirth
  • Publication number: 20210020476
    Abstract: A method includes receiving, by a first loadlock chamber of the loadlock system, a first object from a factory interface via a first opening. The first object is transferred into the first loadlock chamber via a first robot arm. The factory interface is at a first state. The first loadlock chamber is configured to receive different types of objects. The method further includes sealing a first loadlock door against the first opening to create a first sealed environment at the first state in the first loadlock chamber and causing the first sealed environment of the first loadlock chamber to be changed to a second state. The method further includes actuating a second loadlock door to provide a second opening between the first loadlock chamber and a transfer chamber. The first object is to be transferred from the first loadlock chamber to the transfer chamber via a second robot arm.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 21, 2021
    Inventors: Andrew Paul Harbert, Michael C. Kuchar, Nicholas Michael Bergantz, Leon Volfovski, Sivakumar Ramalingam, Karuppasamy Muthukamatchi, Douglas R. McAllister
  • Publication number: 20200411347
    Abstract: A robotic object handling system comprises a robot arm, a non-contact sensor, a first station, and a computing device. The computing device is to cause the robot arm to pick up an object on an end effector, cause the robot arm to position the object within a detection area of the non-contact sensor, cause the non-contact sensor to generate sensor data of the object, determine at least one of a rotational error of the object relative to a target orientation or a positional error of the object relative to a target position based on the sensor data, cause an adjustment to the robot arm to approximately remove at least one of the rotational error or the positional error from the object, and cause the robot arm to place the object at the first station, wherein the placed object lacks at least one of the rotational error or the positional error.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 31, 2020
    Inventors: Nicholas Michael Kopec, Damon K. Cox, Leon Volfovski
  • Publication number: 20200373194
    Abstract: A process kit ring adaptor includes a rigid carrier. The rigid carrier includes an upper surface and a lower surface. The upper surface includes a first distal portion and a second distal portion to support a process kit ring. The lower surface includes a first region to interface with an end effector configured to support wafers and a solid planar central region to interface with a vacuum chuck.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Leon Volfovski, Andreas Schmid, Denis Martin Koosau, Nicholas Michael Kopec, Steven Babayan, Douglas R. McAllister, Helder Lee, Jeffrey Hudgens, Damon K. Cox
  • Publication number: 20200373190
    Abstract: A process kit enclosure system includes surfaces to enclose an interior volume, a first support structure including first fins, a second support structure including second fins, and a front interface to interface the process kit enclosure system with a load port of a wafer processing system. The first and second fins are sized and spaced to hold process kit ring carriers and process kit rings in the interior volume. Each of the process kit rings is secured to one of the process kit ring carriers. The process kit enclosure system enables first automated transfer of a first process kit ring carrier securing a first process kit ring from the process kit enclosure system into the wafer processing system and second automated transfer of a second process kit ring carrier securing a second process kit ring from the wafer processing system into the process kit enclosure system.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Helder Lee, Nicholas Michael Kopec, Leon Volfovski, Douglas R. McAllister, Andreas Schmid, Jeffrey Hudgens, Yogananda Sarode Vishwanath, Steven Babayan
  • Publication number: 20200273826
    Abstract: Replaceable contact pads of end effectors are provided. The contact pads support substrates in electronic device manufacturing. The contact pad includes a contact pad head having a contact surface configured to contact a substrate, a shaft coupled to the contact pad head, the shaft including a shaft indent formed between an underside of the contact pad head and a shaft end, and a circular securing member received around the shaft and seated in the shaft indent and configured to secure the contact pad to the end effector body. End effectors including replaceable contact pads and maintenance methods are described, as are additional aspects.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 27, 2020
    Inventors: Whitney Kroetz, Damon Keith Cox, Leon Volfovski, Jeffrey C. Hudgens, Balamurali Murugaraj
  • Patent number: 10736182
    Abstract: Substrate temperature control apparatus and electronic device manufacturing systems provide pixelated light-based heating to a substrate in a process chamber. A substrate holder in the process chamber may include a baseplate. The baseplate has a top surface that may have a plurality of cavities and a plurality of grooves connected to the cavities. Optical fibers may be received in the grooves such that each cavity has a respective optical fiber terminating therein to transfer light thereto. Some or all of the cavities may have an epoxy optical diffuser disposed therein to diffuse light provided by the optical fiber. A ceramic plate upon which a substrate may be placed may be bonded to the baseplate. A thermal spreader plate may optionally be provided between the baseplate and the ceramic plate. Methods of controlling temperature across a substrate holder in an electronic device manufacturing system are also provided, as are other aspects.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 4, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Matthew Busche, Wendell Boyd, Jr., Todd J. Egan, Gregory L. Kirk, Vijay D. Parkhe, Michael R. Rice, Leon Volfovski
  • Patent number: 10242890
    Abstract: Embodiments of substrate supports with a heater are provided herein. In some embodiments, a substrate support may include a first member to distribute heat to a substrate when present above a first surface of the first member; a heater coupled to the first member and having one or more heating zones to provide heat to the first member; a second member disposed beneath the first member; a tubular body disposed between the first and second members, wherein the tubular body forms a gap between the first and second members; and a plurality of substrate support pins disposed a first distance above the first surface of the first member, the plurality of substrate support pins to support a backside surface of a substrate when present on the substrate support.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leon Volfovski, Mayur G. Kulkarni