Patents by Inventor Leon W M M Terstappen

Leon W M M Terstappen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180208998
    Abstract: The invention relates generally to the field of the identification of DNA sequences, genes or chromosomes. Methods and composition to obtain Unique Sequence DNA probes are provided. Compositions comprised of and double stranded DNA containing Unique Sequences from which the repetitive sequences are eliminated according to the method described in this invention. The invention also relates to the preservation of cells that have been identified after immunomagnetic selection and fluorescent labeling in order to further interrogate the cells of interest. Furthermore the invention relates to genetic analysis of cells that have been identified after immunomagnetic selection and fluorescent labeling.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Applicant: Menarini Silicon Biosystems, Inc.
    Inventors: John Verrant, Mark Carle CONNELLY, Brad FOULK, Michael T. KAGAN, Joost F. SWENNENHUIS, Leon W.M.M. TERSTAPPEN, Arjan G.J. TIBBE
  • Patent number: 9957571
    Abstract: The invention relates generally to the field of the identification of DNA sequences, genes or chromosomes. Methods and composition to obtain Unique Sequence DNA probes are provided. Compositions comprises of and double stranded DNA containing Unique Sequences from which the repetitive sequences are eliminated according to the method described in this invention. The invention also relates to the preservation of cells that have been identified after immunomagnetic selection and fluorescent labeling in order to further interrogate the cells of interest. Furthermore the invention relates to genetic analysis of cells that have been identified after immunomagnetic selection and fluorescent labeling.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: May 1, 2018
    Assignee: Menarini Silicon Biosystems, Inc.
    Inventors: John Verrant, Mark Carle Connelly, Brad Foulk, Michael T Kagan, Joost F Swennenhuis, Leon W. M. M. Terstappen, Arjan G. J. Tibbe
  • Publication number: 20160046998
    Abstract: The invention relates generally to the field of the identification of DNA sequences, genes or chromosomes. Methods and composition to obtain Unique Sequence DNA probes are provided. Compositions comprises of and double stranded DNA containing Unique Sequences from which the repetitive sequences are eliminated according to the method described in this invention. The invention also relates to the preservation of cells that have been identified after immunomagnetic selection and fluorescent labeling in order to further interrogate the cells of interest. Furthermore the invention relates to genetic analysis of cells that have been identified after immunomagnetic selection and fluorescent labeling.
    Type: Application
    Filed: June 23, 2015
    Publication date: February 18, 2016
    Inventors: John Verrant, Mark Carle Connelly, Brad Foulk, Michael T Kagan, Joost F Swennenhuis, Leon W.M.M. Terstappen, Arjan G.J. Tibbe
  • Patent number: 9127302
    Abstract: The invention relates generally to the field of identification of DNA sequences, genes or chromosomes. Methods and composition to obtain Unique Sequence DNA probes are provided. Composition comprises of any double stranded DNA containing Unique Sequences from which the repetitive sequences are eliminated according to the method described in this invention. The invention also relates to the preservation of cells that have been identified after immunomagnetic selection and fluorescent labeling in order to further interrogate the cells of interest. Furthermore the invention relates to genetic analysis of cells that have been identified after immunomagnetic selection and fluorescent labeling.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: September 8, 2015
    Assignee: Janssen Diagnostics, LLC
    Inventors: John A Verrant, Arjan G. J. Tibbe, Brad Foulk, Joost F. Swennenhuis, Leon W. M. M. Terstappen, Mark Carle Connelly, Michael T. Kagan
  • Patent number: 8569077
    Abstract: A method for removing excess unbound ferrofluid and imaging immunomagnetically enriched circulating tumor cells is provided. A vessels having a preformed grooves in the viewing surface is optimally designed for cell alignment and imaging. After separating the unbound particles by centrifugation, an externally-applied force is applied to transport magnetically responsive particle-CTC complex toward the transparent collection wall. The grooved inner surface of the viewing face of the chamber provide uniform distribution of the particles for easy imaging. The invention is also useful in conducting quantitative analysis and sample preparation in conjunction with automated cell enumeration techniques as in quantitative analysis of CTC in disease.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: October 29, 2013
    Assignee: Veridex, LLC
    Inventors: Tyco M. Scholtens, Frederik Schreuder, Jan Greve, Arjan G. J. Tibbe, Leon W. M. M. Terstappen
  • Patent number: 8329422
    Abstract: The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CELLSPOTTERĀ® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Veridex LLC
    Inventors: Galla Chandra Rao, Christopher Larson, Madeline Repollet, Herman Rutner, Leon W. M. M. Terstappen, Shawn Mark O'Hara, Steven Gross
  • Patent number: 8189899
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 29, 2012
    Assignee: Veridex, LLC
    Inventors: Frank A. W. Coumans, Jan Greve, Frank P. Modica, Leon W. M. M. Terstappen, Arjan G. J. Tibbe, John A. Verrant
  • Patent number: 8128890
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 6, 2012
    Assignee: Veridex, LLC
    Inventors: Erik Droog, Dhanesh Gohel, Arjan G. J. Tibbe, Jan Greve, Leon W. M. M. Terstappen
  • Patent number: 8110101
    Abstract: A system for enumeration of cells in fluids by image cytometry is described for assessment of target populations such as leukocyte subsets in different bodily fluids or bacterial contamination in environmental samples, food products and bodily fluids. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. A small, permanent magnet is inserted directly into the chamber containing the labeled sample. The magnets are coated with PDMS silicone rubber to provide a smooth and even surface which allows imaging on a single focal plane. The cells are illuminated and the images of the fluorescent light emitted by the target cells are captured by a CCD camera. Image analysis performed with a novel algorithm provides a count of the cells on the surface that can be related to the target cell concentration of the original sample.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 7, 2012
    Assignee: Veridex, LLC
    Inventors: Arjan G. J. Tibbe, Leon W. M. M. Terstappen
  • Patent number: 7943397
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 17, 2011
    Assignee: Veridex, LLC
    Inventors: Arjan Tibbe, Jan Greve, Dhanesh Gohel, Erik Droog, Leon W. M. M. Terstappen
  • Publication number: 20110104718
    Abstract: The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotterĀ® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 5, 2011
    Applicant: VERIDEX, LLC
    Inventors: Galla Chandra Rao, Christopher Larson, Madeline Repollet, Herman Rutner, Leon W.M.M. Terstappen, Shawn Mark O'Hara, Steven Gross
  • Patent number: 7901950
    Abstract: Elevated number of Circulating Endothelial Cells (CEC) have been implicated in disease conditions associated with the formation or destruction of blood vessels such as acute coronary syndrome, thrombocytopenic purpura, sickle cell disease, sepsis, lupus, nephrotic syndromes, rejection of organ transplants, surgical trauma and cancer. This invention provides a method for assessing the levels of CEC which vary between different studies using a sensitive enrichment, imaging, and enumberation analysis. CD146 is one of the most specific endothelium-associated cell-surface antigens which can be used in image cytometry. CEC analysis provides an essential tool in prognostic/diagnostic evaluation in the clinic.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 8, 2011
    Assignee: Veridex, LLC
    Inventors: Mark Carle Connelly, Gerald V. Doyle, Galla Chandra Rao, Leon W. M. M. Terstappen
  • Publication number: 20110052037
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet.
    Type: Application
    Filed: February 17, 2010
    Publication date: March 3, 2011
    Applicant: VERIDEX, LLC
    Inventors: Frank A.W. Coumans, Jan Greve, Frank P. Modica, Leon W.M.M. Terstappen, Arjan G.J. Tibbe, John A. Verrant
  • Publication number: 20110044527
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Applicant: VERIDEX, LLC
    Inventors: Arjan Tibbe, Jan Greve, Dhanesh Gohel, Erik Droog, Leon W.M.M. Terstappen
  • Publication number: 20110014686
    Abstract: A system for enumeration of cells in fluids by image cytometry is described for assessment of target populations such as leukocyte subsets in different bodily fluids or bacterial contamination in environmental samples, food products and bodily fluids. Briefly, fluorescently labeled target cells are linked to magnetic particles or beads. In one embodiment, a small, permanent magnet is inserted directly into the chamber containing the labeled cells. The magnets are coated with PDMS silicone rubber to provide a smooth and even surface which allows imaging on a single focal plane. The magnet is removed from the sample and illuminated with fluorescent light emitted by the target cells captured by a CCD camera. In another embodiment, a floater having a permanent magnet allows the target cells to line up along a single imaging plane within the sample solution.
    Type: Application
    Filed: September 23, 2010
    Publication date: January 20, 2011
    Inventors: Arjan G.J. Tibbe, Leon W.M.M. Terstappen
  • Patent number: 7863012
    Abstract: The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotterĀ® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: January 4, 2011
    Assignee: Veridex, LLC
    Inventors: Galla Chandra Rao, Christopher Larson, Madeline Repollet, Herman Rutner, Leon W. M. M. Terstappen, Shawn Mark O'Hara, Steven Gross
  • Patent number: 7828968
    Abstract: A system for enumeration of cells in fluids by image cytometry is described for assessment of target populations such as leukocyte subsets in different bodily fluids or bacterial contamination in environmental samples, food products and bodily fluids. Briefly, fluorescently labeled target cells are linked to magnetic particles or beads. In one embodiment, a small, permanent magnet is inserted directly into the chamber containing the labeled cells. The magnets are coated with PDMS silicone rubber to provide a smooth and even surface which allows imaging on a single focal plane. The magnet is removed from the sample and illuminated with fluorescent light emitted by the target cells captured by a CCD camera. In another embodiment, a floater having a permanent magnet allows the target cells to line up along a single imaging plane within the sample solution.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: November 9, 2010
    Assignee: Veridex, LLC
    Inventors: Arjan G. J. Tibbe, Leon W. M. M. Terstappen
  • Patent number: 7764821
    Abstract: The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: July 27, 2010
    Assignee: Veridex, LLC
    Inventors: Frank A. W. Coumans, Jan Greve, Frank P. Modica, Leon W. M. M. Terstappen, Arjan G. J. Tibbe, John A. Verrant
  • Publication number: 20090286264
    Abstract: A method for removing excess unbound ferrofluid and imaging immunomagnetically enriched circulating tumor cells is provided. A vessels having a preformed grooves in the viewing surface is optimally designed for cell alignment and imaging. After separating the unbound particles by centrifugation, an externally-applied force is applied to transport magnetically responsive particle-CTC complex toward the transparent collection wall. The grooved inner surface of the viewing face of the chamber provide uniform distribution of the particles for easy imaging. The invention is also useful in conducting quantitative analysis and sample preparation in conjunction with automated cell enumeration techniques as in quantitative analysis of CTC in disease.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 19, 2009
    Inventors: Tyco M. Scholtens, Frederik Schreuder, Jan Greve, Arhjan G.J. Tibbe, Leon W.M.M. Terstappen
  • Publication number: 20090258365
    Abstract: The present invention describes methods and probe composition for an automated FISH assay of a blood sample containing circulating tumor cells expressing the IGF-1R gene. The assay provides genetic analysis of suspect circulating tumor cells that have been identified after immunomagnetic selection and fluorescent labeling. Using unique, repeat-free probes to the IGF-1R locus and a chromosome 15 reference probe, cell lines expressing an aberrant number of IGF-1R and Chr 15 signals were detected, including one cell line with a low level of IGF-1R amplification. The ability to directly examine the genetic profile of IGF-1R on circulating tumor cells may provide an automated means for assessing disease and patient response to therapy.
    Type: Application
    Filed: March 23, 2009
    Publication date: October 15, 2009
    Inventors: Leon W.M.M. Terstappen, Brad Foulk