Patents by Inventor Leonard C. Aamodt

Leonard C. Aamodt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4468136
    Abstract: The present invention provides a thermal imaging method to evaluate the surface and subsurface properties of a material and is based on techniques of optical beam deflection thermal imaging. The invention uses a localized excitation source, such as an optical beam, to provide localized heating of the sample surface. A surface thermal gradient is induced on the sample surface as heat flows, in three dimensions, from the area of localized excitation into the test material. The surface temperature gradient causes a thermal refractive lens to be generated in the fluid (gas or liquid) adjacent to the sample surface. An optical probe beam is directed through the thermal lens and is deflected by changes in a refractive index of the thermal lens. Changes in the refractive index are induced by variations of the surface temperature. In this manner, a detailed surface temperature profile can be generated which reveals surface and subsurface properties of the material tested.
    Type: Grant
    Filed: February 12, 1982
    Date of Patent: August 28, 1984
    Assignee: The Johns Hopkins University
    Inventors: John C. Murphy, Leonard C. Aamodt
  • Patent number: 4184768
    Abstract: Pulsed light and readily measurable pulsed electrical energy are independently applied to a solid black, conductive sample in a gas-filled photoacoustic cell, each causing the black sample to heat. The heating of the black sample causes a pressure wave in the cell, which can be detected and measured. By adjusting the pulsed electrical energy, the pressure wave resulting from the pulsed electrical energy can be made to relate to the pressure wave resulting from the pulsed light in a predetermined manner. The pulsed light input intensity can then be measured in electrical units based on the measurable input of the electrical energy pulses. In this manner, the invention can be used as a radiometer. A second application for the present apparatus is in calibrating photoacoustic spectroscopy (PAS) cells. The PAS cell can be self-calibrated by discontinuing the light pulses and relating the pressure wave output to the electrical energy pulse input.
    Type: Grant
    Filed: November 4, 1977
    Date of Patent: January 22, 1980
    Assignee: The Johns Hopkins University
    Inventors: John C. Murphy, Leonard C. Aamodt