Patents by Inventor Leonard Charles Dabich, II

Leonard Charles Dabich, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134129
    Abstract: Assemblies and optical connectors including one or more optical fibers laser-bonded to a substrate, as well as methods for fabricating the same, are disclosed. In one embodiment, an assembly includes a substrate having a surface, an optical element bonded to the surface of the substrate, a bond area between the optical fiber and the surface of the substrate, wherein the bond area includes laser-melted material of the substrate that bonds the optical fiber to the substrate, and a metal buttress structure adjacent to the bond area.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 25, 2024
    Inventors: Leonard Charles Dabich, II, Mark Alejandro Quesada
  • Patent number: 11884574
    Abstract: Disclosed herein are methods for forming low melting point glass fibers comprising providing a glass feedstock comprising a low melting point glass and melt-spinning the glass feedstock to produce glass fibers, wherein the glass transition temperature of the glass fibers is less than or equal to about 120% of the glass transition temperature of the glass feedstock. The disclosure also relates to method for forming low melting point glass frit further comprising jet-milling the glass fibers. Low melting point glass frit and fibers produced by the methods described above are also disclosed herein.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: January 30, 2024
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Shari Elizabeth Koval, Mark Alejandro Quesada, Paul Arthur Tick
  • Publication number: 20230329033
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 12, 2023
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 11711938
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: July 25, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20230124925
    Abstract: Disclosed herein are methods for forming low melting point glass fibers comprising providing a glass feedstock comprising a low melting point glass and melt-spinning the glass feedstock to produce glass fibers, wherein the glass transition temperature of the glass fibers is less than or equal to about 120% of the glass transition temperature of the glass feedstock. The disclosure also relates to method for forming low melting point glass frit further comprising jet-milling the glass fibers. Low melting point glass frit and fibers produced by the methods described above are also disclosed herein.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Leonard Charles Dabich, II, Shari Elizabeth Koval, Mark Alejandro Quesada, Paul Arthur Tick
  • Publication number: 20230072335
    Abstract: Assemblies having one or more optical fibers laser bonded to a substrate are disclosed. In one embodiment, an assembly includes a substrate having a surface, an array of optical elements bonded to the surface of the substrate, an epoxy disposed between individual optical elements of the array of optical elements, and a plurality of spacer elements disposed within the epoxy, wherein at least one spacer element of the plurality of spacer elements is positioned between adjacent optical elements of the array of optical elements, and the plurality of spacer elements has a coefficient of thermal expansion that is less than a coefficient of thermal expansion of the epoxy. The assembly includes a bond area between each optical element of the array of optical elements and the surface of the substrate, wherein the bond area includes laser-melted material of the substrate that bonds the optical element to the substrate.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 9, 2023
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada
  • Patent number: 11560328
    Abstract: Disclosed herein are methods for forming low melting point glass fibers comprising providing a glass feedstock comprising a low melting point glass and melt-spinning the glass feedstock to produce glass fibers, wherein the glass transition temperature of the glass fibers is less than or equal to about 120% of the glass transition temperature of the glass feedstock. The disclosure also relates to method for forming low melting point glass frit further comprising jet-milling the glass fibers. Low melting point glass frit and fibers produced by the methods described above are also disclosed herein.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: January 24, 2023
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Mark Alejandro Quesada, Shari Elizabeth Koval, Paul Arthur Tick
  • Patent number: 11186518
    Abstract: A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Tracie Lynne Carleton, Leonard Charles Dabich, II, David Alan Deneka, Mandakini Kanungo, Shenping Li, Xiang-Dong Mi, Mark Alejandro Quesada, Wageesha Senaratne, John Charles Speeckaert, Louis Joseph Stempin, Jr., Wanda Janina Walczak, Haregewine Tadesse Woldegiworgis
  • Publication number: 20210220947
    Abstract: A laser-welded assembly of opposing sheets of ceramic and glass, ceramic, or glass-ceramic compositions comprises an intervening bonding layer having a thickness dimension that separates the opposing sheets by less than about 1000 nm. Each of the opposing sheets has a thickness dimension at least about 20 times the thickness dimension of the intervening bonding layer. The intervening bonding layer has a melting point greater than that of one or both of the opposing sheets. The ceramic sheet is a pass-through sheet with a composite T/R spectrum comprising a portion that lies below about 30% across a target irradiation band residing at or above about 1400 nm and at or below about 4500 nm wavelength. The intervening bonding layer has an absorption spectrum comprising a portion that lies above about 80% across the target irradiation band. The assembly comprises a weld bonding the opposing surfaces of the opposing sheets.
    Type: Application
    Filed: February 19, 2019
    Publication date: July 22, 2021
    Inventors: Michael Edward Badding, Leonard Charles Dabich, II, David Mark Lance, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20200161509
    Abstract: The QD LED module (10) disclosed herein includes a support assembly (40), a circuit board (20), an LED (30) operably supported by the circuit board, wherein the LED emits blue light (36G). The QD LED module also has a QD structure (60) supported by the support assembly and axially spaced apart from the LED surface. The QD structure has an active area (AR) that includes a first region (R1) of QD material and a second region (R2) that has no QD material. A first portion of the blue light passes through the first region and is converted to red light (36R) and green light (36G). A second portion of the blue light passes through the second region. The QD material has a CIE color point that is shifted toward the yellow portion of the color space.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 21, 2020
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, William Allen Wood
  • Publication number: 20200002224
    Abstract: A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 2, 2020
    Inventors: Tracie Lynne Carleton, Leonard Charles Dabich, II, David Alan Deneka, Mandakini Kanungo, Shenping Li, Xiang-Dong Mi, Mark Alejandro Quesada, Wageesha Senaratne, John Charles Speeckaert, Louis Joseph Stempin, Jr., Wanda Janina Walczak, Haregewine Tadesse Woldegiworgis
  • Patent number: 10497898
    Abstract: A laser weldable device housing substrate, device housing and related method are provided. The substrate includes a first surface, a second surface opposite the first surface, and a thin inorganic particle layer supported by the first surface. The inorganic particle layer includes a plurality of particles arranged in a layer on the first surface. The particles have an average diameter of less than or equal to 1.0 ?m, and the inorganic particle layer has an average thickness of less than or equal to 5 ?m.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: December 3, 2019
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Theresa Chang, Leonard Charles Dabich, II, Mark Alan Lewis, Stephan Lvovich Logunov, Mark Alejandro Quesada, Wageesha Senaratne, Alexander Mikhailovich Streltsov
  • Patent number: 10457595
    Abstract: A method of forming a sealed device comprising providing a first substrate having a first surface, providing a second substrate adjacent the first substrate, and forming a weld between an interface of the first substrate and the adjacent second substrate, wherein the weld is characterized by ((?tensile stress location)/(?interface laser weld))<<1 or <1 and ?interface laser weld>10 MPa or >1 MPa where ?tensile stress location is the stress present in the first substrate and ?interface laser weld is the stress present at the interface. This method may be used to manufacture a variety of different sealed packages.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: October 29, 2019
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Leonard Charles Dabich, II, David Alan Deneka, Jin Su Kim, Shari Elizabeth Koval, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 10283731
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 7, 2019
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190074476
    Abstract: Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
    Type: Application
    Filed: March 8, 2017
    Publication date: March 7, 2019
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 10069104
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 4, 2018
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20180138445
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Application
    Filed: July 20, 2017
    Publication date: May 17, 2018
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20180138446
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Application
    Filed: September 8, 2017
    Publication date: May 17, 2018
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20170327419
    Abstract: A method of forming a sealed device comprising providing a first substrate having a first surface, providing a second substrate adjacent the first substrate, and forming a weld between an interface of the first substrate and the adjacent second substrate, wherein the weld is characterized by ((?tensile stress location)/(?interface laser weld))<<1 or <1 and ?interface laser weld>10 MPa or >1 MPa where ?tensile stress location is the stress present in the first substrate and ?interface laser weld is the stress present at the interface. This method may be used to manufacture a variety of different sealed packages.
    Type: Application
    Filed: October 29, 2015
    Publication date: November 16, 2017
    Inventors: Heather Debra Boek, Leonard Charles Dabich, II, David Alan Deneka, Jin Su Kim, Shari Elizabeth Koval, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Patent number: 9761828
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: September 12, 2017
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov