Patents by Inventor Leonard J. Mahoney

Leonard J. Mahoney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8545669
    Abstract: A plasma processing system is provided with diagnostic apparatus for making in-situ measurements of plasma properties. The diagnostic apparatus generally comprises a non-invasive sensor array disposed within a plasma processing chamber, an electrical circuit for stimulating the sensors, and means for recording and communicating sensor measurements for monitoring or control of the plasma process. In one form, the sensors are dynamically pulsed dual floating Langmuir probes that measure incident charged particle currents and electron temperatures in proximity to the plasma boundary or boundaries within the processing system. The plasma measurements may be used to monitor the condition of the processing plasma or furnished to a process system controller for use in controlling the plasma process.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 1, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Leonard J. Mahoney, Carl W. Almgren, Gregory A. Roche, William W. Saylor, William D. Sproul, Hendrik V. Walde
  • Patent number: 7853364
    Abstract: An ion source, often used for materials processing applications in a vacuum processing chamber, is provided with an adaptive control system. The adaptive control system has a microprocessor and memory that regulate the inputs of power and gas flow into the ion source. The adaptive control system monitors and stores the dynamic input impedance properties and status of input devices to the ion source. The adaptive control system may additionally control magnetic fields within the ion source. The adaptive control system provides a multivariable control for driving any combination of input power, gas flow, magnetic field, or electrostatic ion beam extraction or acceleration field into the ion source.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 14, 2010
    Assignee: Veeco Instruments, Inc.
    Inventors: James D. Deakins, Dennis J. Hansen, Leonard J. Mahoney, Tolga Erguder, David M. Burtner
  • Publication number: 20080129209
    Abstract: An ion source, often used for materials processing applications in a vacuum processing chamber, is provided with an adaptive control system. The adaptive control system has a microprocessor and memory that regulate the inputs of power and gas flow into the ion source. The adaptive control system monitors and stores the dynamic input impedance properties and status of input devices to the ion source. The adaptive control system may additionally control magnetic fields within the ion source. The adaptive control system provides a multivariable control for driving any combination of input power, gas flow, magnetic field, or electrostatic ion beam extraction or acceleration field into the ion source.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 5, 2008
    Applicant: VEECO INSTRUMENTS, INC.
    Inventors: James D. Deakins, Dennis J. Hansen, Leonard J. Mahoney, Tolga Erguder, David M. Burtner
  • Patent number: 7192505
    Abstract: There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 20, 2007
    Assignee: Advanced Plasma, Inc.
    Inventors: Gregory A. Roche, Leonard J. Mahoney, Daniel C. Carter, Steven J. Roberts
  • Patent number: 6902646
    Abstract: A plasma processing system is provided with diagnostic apparatus for making in-situ measurements of plasma properties. The diagnostic apparatus generally comprises a non-invasive sensor array disposed within a plasma processing chamber, an electrical circuit for stimulating the sensors, and means for recording and communicating sensor measurements for monitoring or control of the plasma process. In one form, the sensors are dynamically pulsed dual floating Langmuir probes that measure incident charged particle currents and electron temperatures in proximity to the plasma boundary or boundaries within the processing system. The plasma measurements may be used to monitor the condition of the processing plasma or furnished to a process system controller for use in controlling the plasma process.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: June 7, 2005
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Leonard J. Mahoney, Carl W. Almgren, Gregory A. Roche, William W. Saylor, William D. Sproul, Hendrik V. Walde
  • Patent number: 6830650
    Abstract: There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: December 14, 2004
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Gregory A. Roche, Leonard J. Mahoney, Daniel C. Carter, Steven J. Roberts
  • Publication number: 20040007326
    Abstract: There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Inventors: Gregory A. Roche, Leonard J. Mahoney, Daniel C. Carter, Steven J. Roberts
  • Patent number: 6432260
    Abstract: There is provided by this invention a novel inductively coupled plasma source apparatus that utilizes a transformer to induce closed path secondary plasma currents in a hollow metal housing that is directly cooled by a fluid. This plasma source apparatus is particularly useful for generating a high charged particle density source of ions, electrons, and chemically active species to serve various plasma related processes that may require high power densities. A hollow metal vacuum chamber is coupled to and electrically insulated from a metal vacuum process chamber by means of dielectric gaps that are well shielded from direct exposure to the plasma body. Electrons, photons and excited gaseous species are generated within the metal hollow chamber and process chamber to serve a wide variety of material, surface and gas processing applications. There is also provided by this invention a means of ganging together several hollow metal vacuum chamber assemblies about a single vacuum process chamber.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: August 13, 2002
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Leonard J. Mahoney, Gregory A. Roche, Daniel C. Carter
  • Patent number: 5521351
    Abstract: A plasma is generated within the interior of a hollow form held within a vacuum chamber enclosure by utilizing a radio frequency coil mounted within the vacuum chamber and defining a working volume which closely conforms to the shape of the hollow form. The hollow form and the interior of the vacuum chamber are evacuated to a low pressure, and a gas is introduced into the interior of the hollow form to maintain the pressure within the form higher than the pressure in the vacuum chamber outside of the form. Radio frequency electrical power is supplied to the coil to induce an electric field within the form which is sufficient to break down the gas within the form to form a plasma at the pressure of the gas within the form, but does not break down the gas at the lower pressure in the vacuum chamber outside of the hollow form.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: May 28, 1996
    Assignee: Wisconsin Alumni Research Foundation
    Inventor: Leonard J. Mahoney
  • Patent number: 5411914
    Abstract: A new III-V buffer or passivation material is described which is produced by low temperature growth (LTG) of III-V compounds. The material has unique and desirable properties, particularly for closely spaced, submicron gate length active III-V semiconductor FET devices, such as HEMT's, MESFET's and MISFET's. The LTG material is grown under ambient conditions which incorporate an excess of the more volatile of the III-V species into the grown material. The new material is crystalline, highly resistive, relatively insensitive to light, and can be overgrown with high quality III-V active layers or used as a passivation material to insulate and protect active device structures.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: May 2, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: Chang-Lee Chen, Leonard J. Mahoney, Michael J. Manfra, Frank W. Smith, Arthur R. Calawa