Patents by Inventor Leonard M. Quick

Leonard M. Quick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5756053
    Abstract: A method for treating cooking fumes to oxidize oxidizeable particulate and gaseous components thereof includes contacting the fumes with a catalytic material containing ceria and alumina each having a BET surface of at least about 10 m.sup.2 /g, for example, ceria and activated alumina in a weight ratio of from about 1.5:1 and 1:1.5 and a BET surface area of from about 25 m.sup.2 /g to 200 m.sup.2 /g. Optionally, a catalytic metal component such as platinum or palladium may be included in the catalytic material. The foodstuffs cooking fumes are contacted with the catalyst composition (22 or 40) at a temperature of 200.degree. C. to 600.degree. C. to promote the oxidation of both particulate (atomized) animal and/or vegetable oils and fats and oxidizeable gas phase components of the fumes. Optionally, a separate, supplemental gas phase oxidation catalyst (42) may be used in conjunction with and downstream of the above-described catalyst (40) to provide a two-catalyst system for treating cooking fumes.
    Type: Grant
    Filed: May 7, 1996
    Date of Patent: May 26, 1998
    Assignee: Engelhard Corporation
    Inventors: Jeffrey B. Hoke, Matthew P. Larkin, Robert J. Farrauto, Kenneth E. Voss, Robert E. Whiteley, Leonard M. Quick
  • Patent number: 5580535
    Abstract: A method for treating cooking fumes to oxidize oxidizeable particulate and gaseous components thereof includes contacting the fumes with a catalytic material containing ceria and alumina each having a BET surface of at least about 10 m.sup.2 /g, for example, ceria and activated alumina in a weight ratio of from about 1.5:1 and 1:1.5 and a BET surface area of from about 25 m.sup.2 /g to 200 m.sup.2 /g. Optionally, a catalytic metal component such as platinum or palladium may be included in the catalytic material. The foodstuffs cooking fumes are contacted with the catalyst composition (22 or 40) at a temperature of 200.degree. C. to 600.degree. C. to promote the oxidation of both particulate (atomized) animal and/or vegetable oils and fats and oxidizeable gas phase components of the fumes. Optionally, a separate, supplemental gas phase oxidation catalyst (42) may be used in conjunction with and downstream of the above-described catalyst (40) to provide a two-catalyst system for treating cooking fumes.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: December 3, 1996
    Assignee: Engelhard Corporation
    Inventors: Jeffrey B. Hoke, Matthew P. Larkin, Robert J. Farrauto, Kenneth E. Voss, Robert E. Whiteley, Leonard M. Quick
  • Patent number: 5509798
    Abstract: A catalyst member for use in processes for the catalytic combustion of gaseous carbonaceous fuels is made from a stabilized carrier having a plurality of gas flow passages extending therethrough defined by channel walls and a catalyst material disposed on the channel walls, wherein the carrier is stabilized against interaction with the catalyst material. The stabilized carrier may be prepared from a monolith comprising silica, magnesia and alumina that has a coating of alumina on the channel walls and by subjecting the coated monolith to stabilizing conditions. The stabilizing conditions may include exposure to high temperature steam.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: April 23, 1996
    Assignee: Engelhard Corporation
    Inventors: Jennifer S. Feeley, Dianne O. Simone, Leonard M. Quick, Martha M. Hamil
  • Patent number: 5384300
    Abstract: A catalyst member for use in processes for the catalytic combustion of gaseous carbonaceous fuels is made from a stabilized carrier having a plurality of gas flow passages extending therethrough defined by channel walls and a catalyst material disposed on the channel walls, wherein the carrier is stabilized against interaction with the catalyst material. The stabilized carrier may be prepared from a monolith comprising silica, magnesia and alumina that has a coating of alumina on the channel walls and by subjecting the coated monolith to stabilizing conditions. The stabilizing conditions may include exposure to high temperature steam.
    Type: Grant
    Filed: April 28, 1993
    Date of Patent: January 24, 1995
    Assignee: Engelhard Corporation
    Inventors: Jennifer S. Feeley, Dianne O. Simone, Leonard M. Quick, Martha M. Hamil
  • Patent number: 4549957
    Abstract: Hydrotreating catalysts comprise a hydrogenating component and a support comprising at least one porous refractory inorganic oxide, said catalyst having BET surface area of 150 to about 190 m.sup.2 /g, nitrogen desorption pore volume of 0.8 to about 1.2 cc/g in micropores with radii up to 600 .ANG., with at least 0.7 cc/g of such micropore volume in pores having radii ranging from 50 to 600 .ANG., mercury penetration pore volume of 0.1 to about 0.5 cc/g in macropores with radii of 600 to 25,000 .ANG. and bulk density of about 0.3 to about 0.5 g/cc. Hydrotreating process comprises contacting a hydrocarbon feed susceptible to upgrading with hydrogen in the presence of the aforesaid catalysts under hydrotreating conditions. The catalyt and process are particularly useful in hydrotreating feeds comprising high metals or high metals and sulfur content materials.
    Type: Grant
    Filed: June 21, 1983
    Date of Patent: October 29, 1985
    Assignee: Amoco Corporation
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4495062
    Abstract: A catalyst support is prepared from a composite comprising two or more inorganic oxides by forming the composite into a shaped support material having at least 0.8 cc/gm of its pore volume in pore diameters of 0 nm (0 .ANG.) to 120 nm (1,200 .ANG.) and at least 0.1 cc/gm of its pore volume in pore diameters of 120 nm (1,200 .ANG.) to 5,000 nm (50,000 .ANG.) and heating said shaped support material in the presence of steam at sufficient elevated temperature, steam pressure, and time period to increase the average pore diameter of said shaped support in the absence of any appreciable reduction in pore volume. The inorganic oxide composite is selected from the group consisting of a mixture of alumina and silica; a mixture of alumina, silica, and oxides of phosphorus; a mixture of alumina and oxides of phosphorus; a mixture of alumina and boria; a mixture of alumina, boria and oxides of phosphorus; and a mixture of alumina, magnesia, and oxides of phosphorus, the oxides of phosphorus being calculated as P.sub.
    Type: Grant
    Filed: April 15, 1983
    Date of Patent: January 22, 1985
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4493761
    Abstract: Disclosed is a method for the catalytic hydroliquefaction of solid carbonaceous material with a catalyst consisting essentially of Cr and Mo on a support or Cr, Mo and either CO or Ni on a support. The average pore diameter should be within 100-200.ANG. .
    Type: Grant
    Filed: December 5, 1983
    Date of Patent: January 15, 1985
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4456699
    Abstract: A catalyst support is prepared from a composite comprising alumina and one or more oxides of phosphorus by forming the composite into a shaped support material having at least 0.8 cc/gm of its pore volume in pores having diameters of 0 nm (0 .ANG.) to 120 nm (1,200 .ANG.) and at least 0.1 cc/gm of its pore volume in pores having diameters of 120 nm (1,200 .ANG.) to 5,000 nm (50,000 .ANG.) and heating said shaped support material in the presence of steam at sufficient elevated temperature, steam pressure, and time period to increase the average pore diameter of said shaped support in the absence of any appreciable reduction in pore volume.A catalyst is prepared by impregnating the steam-treated support with at least one hydrogenating metal.The catalyst can be used suitably in hydrocarbon conversion processes, such as a process for the hydrodemetallization of a hydrocarbon stream containing asphaltenes and a substantial amount of metals.
    Type: Grant
    Filed: April 15, 1983
    Date of Patent: June 26, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4454026
    Abstract: Hydrotreating catalysts comprise a hydrogenating component and a support comprising at least one porous refractory inorganic oxide, said catalyst having BET surface area of 150 to about 190 m.sup.2 /g, bulk density of at least about 0.2 g/cc, total pore volume of at least about 0.9 cc/g with mercury penetration pore volume of at least about 0.1 cc/g in macropores with radii of 600 to 25,000 .ANG., such surface area, pore size distribution and total pore volume being effective to give an average pore diameter of at leat 230 .ANG. calculated as 4V/A. Hydrotreating process comprises contacting a hydrocarbon feed with hydrogen in the presence of the aforesaid catalyst under hydrotreating conditions. The catalyst and process are particularly useful in hydrotreating feeds comprising high metals or high metals and sulfur content materials.
    Type: Grant
    Filed: June 11, 1982
    Date of Patent: June 12, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4431525
    Abstract: There is disclosed a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds to reduce the contents of these contaminants. The process comprises contacting said stream in the presence of hydrogen and under suitable hydrotreating conditions in sequence with a first catalyst in a first reaction zone, a second catalyst in a second reaction zone, and a third catalyst in a third reaction zone. The first catalyst comprises a Group VIB metal and/or a Group VIII metal on a porous inorganic oxide support; the second catalyst consists essentially of at least one hydrogenation metal selected from Group VIB deposed on a support material comprising alumina; and the third catalyst comprises a hydrogenating component comprising molybdenum, chromium, and cobalt on a large-pore, catalytically-active alumina. Each catalyst has specific physical properties.
    Type: Grant
    Filed: April 26, 1982
    Date of Patent: February 14, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4399057
    Abstract: Shaped catalyst which can be prepared by use of steam.
    Type: Grant
    Filed: June 17, 1981
    Date of Patent: August 16, 1983
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4395328
    Abstract: A catalyst support is prepared from a composite comprising alumina and one or more oxides of phosphorous by forming the composite into a shaped support material having at least 0.8 cc/gm of its pore volume in pores having diameters of 0 nm (0 A) to 120 nm (1,200 A) and at least 0.1 cc/gm of its pore volume in pores having diameters of 120 nm (1,200 A) to 5,000 nm (50,000 A) and heating said shaped support material in the presence of steam at sufficient elevated temperature, steam pressure, and time period to increase the average pore diameter of said shaped support in the absence of any appreciable reduction in pore volume.A catalyst is prepared by impregnating the steam-treated support with at least one hydrogenating metal.The catalyst can be used suitably in hydrocarbon conversion processes, such as a process for the hydrodemetallization of a hydrocarbon stream containing asphaltenes and a substantial amount of metals.
    Type: Grant
    Filed: June 17, 1981
    Date of Patent: July 26, 1983
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4306965
    Abstract: A process for hydrotreating a hydrocarbon stream such as petroleum distillate and similar hydrocarbon materials by contacting said stream with hydrogen and a catalyst comprising a porous refractory inorganic oxide support and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal. This process enables improved removal of nitrogen and sulfur, particularly from gas oils.
    Type: Grant
    Filed: August 4, 1980
    Date of Patent: December 22, 1981
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick, Donald Hopkins
  • Patent number: 4297242
    Abstract: Disclosed is a two-stage catalytic process for hydrodemetallation and hydrodesulfurization of heavy hydrocarbon streams containing asphaltenes and a substantial amount of metals. The first stage of this process comprises contacting the feedstock in a first reaction zone with hydrogen and a demetallation catalyst comprising hydrogenation metal selected from Group VIB and/or Group VIII deposed on a large-pore, high surface area inorganic oxide support; the second stage of the process comprises contacting the effluent from the first reaction zone with a catalyst consisting essentially of hydrogenation metal selected from Group VIB deposed on a smaller-pore, catalytically active support comprising alumina, said second-stage catalyst having a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, having a majority of its pore volume in pore diameters within the range of about 80 A to about 130 A, and the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.9 cc/gm.
    Type: Grant
    Filed: July 14, 1980
    Date of Patent: October 27, 1981
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4278566
    Abstract: A process for hydrotreating a hydrocarbon stream to remove nitrogen and sulfur which process comprises contacting a hydrocarbon stream comprising a stream selected from petroleum distillate, tar sands distillate, and shale oil, with hydrogen and a catalyst comprising a porous refractory inorganic oxide and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal, said catalyst having a pore volume distribution comprising 20-50% of pore volume in pores with diameters of 0-50 Angstrom units, 30-70% of pore volume in pores with diameters of 50-100 Angstrom units, 0-20% of pore volume in pores with diameters of 100-150 Angstrom units, and 0-10% of pore volume in pores with diameters greater than 150 Angstrom units.
    Type: Grant
    Filed: April 11, 1980
    Date of Patent: July 14, 1981
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick, P. Donald Hopkins
  • Patent number: 4225421
    Abstract: A process for hydrodemetallation and hydrodesulfurization of hydrocarbon feedstock containing asphaltenes and metals by contacting said feedstock with hydrogen and a bimodal catalyst consisting essentially of at least one active original hydrogenation metal selected from Group VIB deposited on a support comprising alumina wherein said catalyst has a surface area within the range of about 140 to about 300 m.sup.2 /gm, a total pore volume based upon measurement by mercury penetration within the range of about 0.4 cc/gm to about 1.0 cc/gm, and comprising about 60% to about 95% of its micropore volume in micropores having diameters within the range of about 50 A to about 200 A, 0% to about 15% of its micropore volume in pores having diameters within the range of about 200 A to about 600 A and about 3% to about 30% of said total pore volume based upon measurements by mercury penetration in macropores having diameters of 600 A or greater.
    Type: Grant
    Filed: March 13, 1979
    Date of Patent: September 30, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4224144
    Abstract: A process for hydrotreating a hydrocarbon stream such as petroleum distillate and similar hydrocarbon materials by contacting said stream with hydrogen and a catalyst comprising a porous refractory inorganic oxide support and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal. This process enables improved removal of nitrogen and sulfur, particularly from gas oils.
    Type: Grant
    Filed: March 19, 1979
    Date of Patent: September 23, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick, P. Donald Hopkins
  • Patent number: 4212729
    Abstract: Disclosed is a two-stage catalytic process for hydrodemetallation and hydrodesulfurization of heavy hydrocarbon streams containing asphaltenes and a substantial amount of metals. The first stage of this process comprises contacting the feedstock in a first reaction zone with hydrogen and a demetallation catalyst comprising hydrogenation metal selected from Group VIB and/or Group VIII deposed on a large-pore, high surface area inorganic oxide support; the second stage of the process comprises contacting the effluent from the first reaction zone with a catalyst consisting essentially of hydrogenation metal selected from Group VIB deposed on a smaller pore, catalytically active support comprising alumina, said second stage catalyst having a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, having a majority of its pore volume in pore diameters within the range of about 80 A to about 130 A, and the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.9 cc/gm.
    Type: Grant
    Filed: July 26, 1978
    Date of Patent: July 15, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4191635
    Abstract: A heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds is (a) contacted with hydrogen and a hydrotreating catalyst containing molybdenum and chromium, either as metals, as oxides, as sulfides, or mixtures thereof, deposed on a large-pore, catalytically active alumina to reduce the metals content in said stream, to convert the asphaltenes, nitrogen compounds, and sulphur compounds in said stream, the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm); and (b) at least a portion of the hydrotreated stream is cracked with a cracking catalyst to produce gasoline and distillates in improved yields. The catalyst in step (a) may also contain cobalt.
    Type: Grant
    Filed: December 7, 1978
    Date of Patent: March 4, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Leonard M. Quick, Albert L. Hensley, Jr.
  • Patent number: 4188284
    Abstract: The process comprises contacting a heavy hydrocarbon stream containing metals and asphaltenes to reduce the contents of nitrogen compounds, sulfur compounds, metals and asphaltenes in the hydrocarbon stream under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component consisting essentially of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof on a large-pore, catalytically active alumina. The catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, and an average pore diameter within the range of about 100 A to about 200 A.
    Type: Grant
    Filed: December 7, 1978
    Date of Patent: February 12, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Leonard M. Quick, Albert L. Hensley, Jr.