Patents by Inventor Leonard Way
Leonard Way has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12227837Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: May 16, 2022Date of Patent: February 18, 2025Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20250014938Abstract: Improved edge rings with flow conductance features are disclosed. The flow conductance features of the edge ring are features added to the edge ring that adjust the flow conductance of gas flowing in the local area of the edge ring. The flow conductance features can adjust the flow conductance to compensate for features on a semiconductor wafer, the edge ring, and in the chamber that may affect the flow of gas in the local areas. The flow conductance may be increased, reduced, or tuned depending on the desired effect.Type: ApplicationFiled: November 21, 2022Publication date: January 9, 2025Inventors: Anand Chandrashekar, Leonard Wai Fung Kho, Son Vo Nam Tran, Jared Ahmad Lee, Raul Vyas, Gang L. Liu, Jasmine Lin
-
Patent number: 12163219Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: September 7, 2022Date of Patent: December 10, 2024Assignee: Lam Research CorporationInventors: Damodar Rajaram Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20230130557Abstract: Providing herein are methods of delivery of gas reactants to a processing chamber and related apparatus.Type: ApplicationFiled: March 3, 2021Publication date: April 27, 2023Inventors: Krishna BIRRU, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Michael BOWES, Yong SUN, Xing ZHANG, Sumit Subhash SINGH
-
Publication number: 20230122846Abstract: Provided herein are methods of filling features with metal including inhibition of metal nucleation. Also provided are methods of enhancing inhibition and methods of reducing or eliminating inhibition of metal nucleation.Type: ApplicationFiled: March 12, 2021Publication date: April 20, 2023Inventors: Rohit KHARE, Krishna BIRRU, Gang L. LIU, Anand CHANDRASHEKAR, Leonard Wai Fung KHO
-
Publication number: 20230002891Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: September 7, 2022Publication date: January 5, 2023Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Publication number: 20220415711Abstract: Provided herein are methods and apparatuses for controlling uniformity of processing at an edge region of a semiconductor wafer. In some embodiments, the methods include providing a backside inhibition gas as part of a deposition-inhibition-deposition (DID) sequence.Type: ApplicationFiled: February 17, 2021Publication date: December 29, 2022Inventors: Gang LIU, Anand CHANDRASHEKAR, Tsung-Han YANG, Michael BOWES, Leonard Wai Fung KHO, Eric H. LENZ
-
Publication number: 20220275504Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
-
Patent number: 11365479Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: July 22, 2020Date of Patent: June 21, 2022Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20210375591Abstract: Provided herein are methods and apparatuses for controlling uniformity of processing at an edge region of a semiconductor wafer. In some embodiments, the methods include exposing an edge region to treatment gases such as etch gases and/or inhibition gases. Also provided herein are exclusion ring assemblies including multiple rings that may be implemented to provide control of the processing environment at the edge of the wafer.Type: ApplicationFiled: April 19, 2019Publication date: December 2, 2021Inventors: Anand Chandrashekar, Eric H. Lenz, Leonard Wai Fung Kho, Jeffrey Charles Clevenger, In Su Ha
-
Publication number: 20200347497Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: July 22, 2020Publication date: November 5, 2020Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Patent number: 10760158Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: GrantFiled: April 16, 2018Date of Patent: September 1, 2020Assignee: Lam Research CorporationInventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare, Huatan Qiu
-
Publication number: 20190185999Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.Type: ApplicationFiled: April 16, 2018Publication date: June 20, 2019Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
-
Publication number: 20190137888Abstract: A liquid immersion lithography apparatus includes a projection system having a final optical element, a stage movable in a scanning direction beneath the projection system and arranged to support a substrate, and a nozzle member disposed to surround at least a lower part of the final optical element. The nozzle member has a first aperture disposed on one side of the final optical element and a second aperture disposed on an other side of the final optical element. During exposure, immersion liquid is supplied and recovered by the nozzle member using the first and second apertures to provide a flow of the immersion liquid across an end surface of the final optical element. The flow of the immersion liquid across the end surface of the final optical element is across the scanning direction.Type: ApplicationFiled: January 3, 2019Publication date: May 9, 2019Applicant: NIKON CORPORATIONInventors: Alex Ka Tim POON, Leonard Wai Fung KHO
-
Patent number: 10203610Abstract: A liquid immersion lithography apparatus includes a projection system having a final optical element and a nozzle member having a first opening disposed on a first side of the final optical element and from which an immersion liquid is supplied, a second opening disposed on a second side of the final optical element and from which the immersion liquid is recovered, and a liquid recovery portion disposed to surround a path of an exposure beam and from which the immersion liquid is recovered. A tank is fluidicly connected to the liquid recovery portion of the nozzle member. During exposure of a substrate to the exposure beam, an upper surface of the substrate faces the liquid recovery portion, and the immersion liquid is supplied from the first opening while performing liquid recovery from the second opening and the liquid recovery portion.Type: GrantFiled: October 18, 2017Date of Patent: February 12, 2019Assignee: NIKON CORPORATIONInventors: Alex Ka Tim Poon, Leonard Wai Fung Kho
-
Publication number: 20180039187Abstract: A liquid immersion lithography apparatus includes a projection system having a final optical element and a nozzle member having a first opening disposed on a first side of the final optical element and from which an immersion liquid is supplied, a second opening disposed on a second side of the final optical element and from which the immersion liquid is recovered, and a liquid recovery portion disposed to surround a path of an exposure beam and from which the immersion liquid is recovered. A tank is fluidicly connected to the liquid recovery portion of the nozzle member. During exposure of a substrate to the exposure beam, an upper surface of the substrate faces the liquid recovery portion, and the immersion liquid is supplied from the first opening while performing liquid recovery from the second opening and the liquid recovery portion.Type: ApplicationFiled: October 18, 2017Publication date: February 8, 2018Applicant: NIKON CORPORATIONInventors: Alex Ka Tim POON, Leonard Wai Fung KHO
-
Patent number: 9817319Abstract: A liquid immersion lithography apparatus includes a projection system having a final optical element and a nozzle member having a first opening disposed on a first side of the final optical element and from which an immersion liquid is supplied, a second opening disposed on a second side of the final optical element and from which the immersion liquid is recovered, and a liquid recovery portion disposed to surround a path of an exposure beam and from which the immersion liquid is recovered. A tank is fluidicly connected to the liquid recovery portion of the nozzle member. During exposure of a substrate to the exposure beam, an upper surface of the substrate faces the liquid recovery portion, and the immersion liquid is supplied from the first opening while performing liquid recovery from the second opening and the liquid recovery portion.Type: GrantFiled: December 29, 2016Date of Patent: November 14, 2017Assignee: NIKON CORPORATIONInventors: Alex Ka Tim Poon, Leonard Wai Fung Kho
-
Publication number: 20170108784Abstract: A liquid immersion lithography apparatus includes a projection system having a final optical element and a nozzle member having a first opening disposed on a first side of the final optical element and from which an immersion liquid is supplied a second opening disposed on a second side of the final optical element and from which the immersion liquid is recovered, and a liquid recovery portion disposed to surround a path of an exposure beam and from which the immersion liquid is recovered. A tank is fluidicly connected to the liquid recovery portion of the nozzle member. During exposure of a substrate to the exposure beam, an upper surface of the substrate faces the liquid recovery portion, and the immersion liquid is supplied from the first opening while performing liquid recovery from the second opening and the liquid recovery portion.Type: ApplicationFiled: December 29, 2016Publication date: April 20, 2017Applicant: NIKON CORPORATIONInventors: Alex Ka Tim POON, Leonard Wai Fung KHO
-
Patent number: 9547243Abstract: An immersion lithography system and method exposes a substrate through a liquid. The substrate is exposed through the liquid, which is provided between a final optical element of a projection lens and the substrate. The liquid is recovered from an upper surface of the substrate via a recovery opening of an immersion apparatus under which the substrate is positioned, the immersion apparatus being disposed around the final optical element of the projection lens. The a pressure for recovering the liquid from the upper surface of the substrate via the recovery opening is controlled by a pressure control system, the pressure control system having a first tank connected to the recovery opening via a recovery flow line and a vacuum regulator to control a pressure in the first tank.Type: GrantFiled: October 21, 2014Date of Patent: January 17, 2017Assignee: NIKON CORPORATIONInventors: Alex Ka Tim Poon, Leonard Wai Fung Kho
-
Patent number: 9329492Abstract: An immersion liquid confinement apparatus confines an immersion liquid in an immersion area that includes a gap between a projection system and an object of exposure in an immersion lithography system. The apparatus also recovers the immersion liquid from the immersion area. The apparatus includes an aperture through which a patterned image is projected, an outlet, a first chamber into which the immersion liquid is recovered through the outlet, and a second chamber into which the immersion liquid is recovered through a porous member from the first chamber. The porous member has a first surface contacting the first chamber and a second surface contacting the second chamber. A vertical position of a first portion of the first surface is different from a vertical position of a second portion of the first surface.Type: GrantFiled: June 27, 2013Date of Patent: May 3, 2016Assignee: NIKON CORPORATIONInventors: Alex Ka Tim Poon, Leonard Wai Fung Kho, Derek Coon