Patents by Inventor Leonardo Ajdelsztajn

Leonardo Ajdelsztajn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110086178
    Abstract: A method for forming a ceramic coating is provided. The method includes providing a slurry comprising a liquid and a plurality of feedstock particles disposed in the liquid, injecting the slurry into the flame of a thermal spray gun, and spraying the slurry on a surface of a substrate using the thermal spray gun to form the ceramic coating such that at least a part of the surface of the substrate is covered by the ceramic coating, wherein a thickness of the ceramic coating is in a range from about 10 nanometers to about 3 micrometers, and wherein a density of the ceramic coating is more than about 90 percent, and wherein the ceramic coating is a continuous coating.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 14, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Anthony Ruud, Leonardo Ajdelsztajn
  • Publication number: 20100279022
    Abstract: A process for providing a protective layer to an article. The process includes depositing a layer of material onto a surface of the article with a thermal spray process. Examples of thermal spray process include high velocity oxygen/air fuel, atmospheric plasma spray, and chemical vapor deposition. Coating methods, such as cold vapor deposition and physical vapor deposition, may also be used. The layer can then be bonded to the article by heating material in the layer adjacent its connection with the article.
    Type: Application
    Filed: May 4, 2009
    Publication date: November 4, 2010
    Applicant: Vetco Gray Inc.
    Inventors: Leonardo Ajdelsztajn, Dennis Gray, Fife B. Ellis, Joseph W. Pallini, JR.
  • Publication number: 20100143620
    Abstract: An article coated with a highly durable, wetting resistant coating is provided. The article comprises a coating that comprises a cermet material. The cermet material includes a nickel-bearing metal matrix and a phase disposed within the matrix. The phase includes an anion moiety, for example nitrogen, carbon, or boron; and a cation moiety, for example chromium, zirconium, titanium, vanadium, hafnium, niobium, or tantalum. The phase is present in the cermet at a level of at least about 5 volume %.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Leonardo Ajdelsztajn, James Anthony Ruud, Dalong Zhong, Molly Maureen Gentleman
  • Patent number: 7361386
    Abstract: The oxidation behavior of the bond coat is improved using a HVOF nanostructured NiCrAlY coating. NiCrAlY powder is mechanically cryomilled and HVOF sprayed onto Ni-based alloy to form a nanocrystalline bond coat. Oxidation is performed on the coating to form the thermally grown oxide layer (thermally grown oxide). After heat treatment at 1000° C. for 24 and 95 hour, a homogeneous ?-Al2O3 layer is formed on top of the bond coat. The nanostructured characteristic of the coating and the presence of Al2O3 within the cryomilled powders (oxidation occurred during cryomilling process) affects the nucleation of the alumina layer on the top of the coating. The formation of a continuous thermally grown oxide layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions, such as those presented in the coating sprayed using the as-received powder.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: April 22, 2008
    Assignees: The Regents of the University of California, Perpetual Technologies
    Inventors: George E. Kim, Julie M. Schoenung, Virgil Provenzano, Enrique J. Lavernia, Leonardo Ajdelsztajn
  • Publication number: 20040131865
    Abstract: The oxidation behavior of the bond coat is improved using a HVOF nanostructured NiCrAlY coating. NiCrAlY powder is mechanically cryomilled and HVOF sprayed onto Ni-based alloy to form a nanocrystalline bond coat. Oxidation is performed on the coating to form the thermally grown oxide layer (thermally grown oxide). After heat treatment at 1000° C. for 24 and 95 hour, a homogeneous &agr;-Al2O3 layer is formed on top of the bond coat. The nanostructured characteristic of the coating and the presence of Al2O3 within the cryomilled powders (oxidation occurred during cryomilling process) affects the nucleation of the alumina layer on the top of the coating. The formation of a continuous thermally grown oxide layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions, such as those presented in the coating sprayed using the as-received powder.
    Type: Application
    Filed: July 22, 2003
    Publication date: July 8, 2004
    Inventors: George E. Kim, Julie M. Schoenung, Virgil Provenzano, Enrique J. Lavernia, Leonardo Ajdelsztajn