Patents by Inventor Leonid B. Galperin

Leonid B. Galperin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7811964
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Patent number: 7456130
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: November 25, 2008
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Patent number: 7449597
    Abstract: A catalyst useful for carbonylation of olefins has been developed. The catalyst comprises a palladium compound, e.g. PdIm4Cl2, where Im is imidazole and HCl dissolved in water or an alcohol. Carbonylation using this catalyst involves contacting an olefin stream preferably in a solvent such as o-xylene with the catalyst and carbon monoxide at carbonylation conditions to provide a carboxylic acid or an ester. When the catalyst solvent is water one can obtain an acid as the product, but when the catalyst solvent is an alcohol one obtains an ester as the product.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: November 11, 2008
    Assignee: UOP LLC
    Inventors: Irina Galperin, legal representative, Paul T. Barger, Robert H. Jensen, Albert L. Lapidus, Oleg L. Eliseev, Leonid B. Galperin
  • Publication number: 20080249346
    Abstract: A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
    Type: Application
    Filed: June 19, 2008
    Publication date: October 9, 2008
    Inventors: Leonid B. Galperin, Deng-Yang Jan, Michael J. McCall, Joseph A. Kocal, Irina Galperin
  • Patent number: 7407907
    Abstract: A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 5, 2008
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Irina Galperin, legal representative, Michael J. McCall, Joseph A. Kocal
  • Patent number: 7405177
    Abstract: A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 29, 2008
    Assignee: UOP LLC
    Inventors: Irina Galperin, legal representative, Deng-Yang Jan, Michael J. McCall, Joseph A. Kocal, Leonid B. Galperin
  • Patent number: 7037871
    Abstract: A process is disclosed for regenerating a hydrocarbon conversion catalyst comprising zeolite L with ozone. The catalyst is contacted with ozone at a temperature of from about 20 to about 250° C. and a concentration of ozone of from about 0.1 to about 5 mol-%. The catalyst may contain coke. The process at least partially restores the activity of the catalyst. The process is particularly useful for reforming and dehydrocyclodimerization catalysts.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: May 2, 2006
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Laurence O. Stine, Margaret A. Stine, Timur V. Voskoboinikov
  • Patent number: 6872300
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: March 29, 2005
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Publication number: 20040147792
    Abstract: A process for producing phenyl-alkanes by paraffin dehydrogenation followed by olefin isomerization and then by alkylation of a phenyl compound by a lightly branched olefin is disclosed. An effluent of the alkylation section comprises paraffins that are recycled to the dehydrogenation step. A process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates is also disclosed. In addition, the compositions produced by these processes, which can comprise detergents, lubricants, and lubricant additives, are disclosed.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 29, 2004
    Inventors: Richard E. Marinangeli, Leonid B. Galperin, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6670516
    Abstract: A process for producing phenyl-alkanes by paraffin dehydrogenation followed by olefin isomerization and then by alkylation of a phenyl compound by a lightly branched olefin is disclosed. An effluent of the alkylation section comprises paraffins that are recycled to the dehydrogenation step. A process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates is also disclosed. In addition, the compositions produced by these processes, which can comprise detergents, lubricants, and lubricant additives, are disclosed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 30, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, Leonid B. Galperin, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6646159
    Abstract: Long chain alcohols and acids or other similar oxygenates such as esters are produced from paraffins of similar carbon number by a process comprising paraffin dehydrogenation, carbonylation, and separation. Preferably a mixture of paraffins extending over several carbon numbers and recovered from a kerosene fraction is processed, and unconverted paraffins are recycled to a dehydrogenation zone. Alternative reaction zone configurations, catalyst systems and product recovery methods are disclosed.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 11, 2003
    Assignee: UOP LLC
    Inventors: Lance A. Baird, Leonid B. Galperin, R. Joe Lawson, Robert H. Jensen, Oleg L. Eliseev, Albert L. Lapidus, Aduard G. Ostapenco
  • Patent number: 6515169
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 4, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6506510
    Abstract: A novel integrated system for the co-production of heat and electricity for residences or commercial buildings is based on the cracking of hydrocarbons to generate hydrogen for a fuel cell. Compared to prior art reforming methods for hydrogen production, the cracking reaction provides an input stream to the fuel cell that is essentially free of CO, a known poison to the anode catalyst in many fuel cell designs, such as PEM fuel cells. The cracking reaction is coupled with an air or steam regeneration cycle to reactivate that cracking catalyst for further use. This regeneration can provide a valuable source of heat or furnace fuel to the system. A novel control method for system adjusts the durations of the cracking and regeneration cycles to optimize the recovery of reaction heat.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: January 14, 2003
    Assignee: UOP LLC
    Inventors: Daniel R. Sioui, Gavin P. Towler, Anil R. Oroskar, Lubo Zhou, Stephen R. Dunne, Santi Kulprathipanja, Leonid B. Galperin, Frank S. Modica, Timur V. Voskoboinikov
  • Patent number: 6448458
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: September 10, 2002
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6383967
    Abstract: A zeolitic catalyst useful in the selective disproportionation and transalkylation of toluene comprises a molecular sieve having a pore diameter of about 5 to 8 Å, a refractory inorganic oxide and a reduced weak non-framework metal which is believed to provide Lewis acidity.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: May 7, 2002
    Assignee: UOP LLC
    Inventors: Jennifer S. Holmgren, Douglas B. Galloway, Leonid B. Galperin, Richard R. Willis
  • Publication number: 20020019562
    Abstract: Long chain alcohols and acids or other similar oxygenates such as esters are produced from paraffins of similar carbon number by a process comprising paraffin dehydrogenation, carbonylation, and separation. Preferably a mixture of paraffins extending over several carbon numbers and recovered from a kerosene fraction is processed, and unconverted paraffins are recycled to a dehydrogenation zone. Alternative reaction zone configurations, catalyst systems and product recovery methods are disclosed.
    Type: Application
    Filed: December 21, 2000
    Publication date: February 14, 2002
    Inventors: Lance A. Baird, Leonid B. Galperin, R. Joe Lawson, Robert H. Jensen, Oleg L. Eliseev, Albert L. Lapidus, Aduard G. Ostapenco
  • Patent number: 6187981
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: February 13, 2001
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6008423
    Abstract: An improved process is disclosed for the selective disproportionation and transalkylation of toluene. The process uses a zeolitic catalyst, preferably comprising a binder, containing a weak metal in a defined reduced state which is believed to provide Lewis acidity in the catalyst. The catalyst and process provide improved selectivity for the production of paraxylene.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: December 28, 1999
    Assignee: UOP LLC
    Inventors: Jennifer S. Holmgren, Douglas B. Galloway, Leonid B. Galperin, Richard R. Willis
  • Patent number: 5954948
    Abstract: Hydrocarbon conversion processes are described which use a sulfur tolerant catalyst system. The catalyst is tolerant to large amounts (about 30,000 ppm sulfur) in the feedstream and comprises a first component which comprises at least one Group VIII metal dispersed on an inorganic oxide support and a second component comprising a metal phthalocyanine dispersed on an inorganic oxide support. Preferred Group VIII metals are platinum and palladium, while preferred metal phthalocyanines are cobalt or nickel phthalocyanine. Preferred inorganic oxide supports are molecular sieves, aluminas and mixtures thereof. Processes which can be carried out using this catalyst system include reforming, hydrocracking, dehydrogenation and isomerization.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: September 21, 1999
    Assignee: UOP LLC
    Inventor: Leonid B. Galperin
  • Patent number: 5905181
    Abstract: A paraffin isomerization process is described and claimed. The process involves contacting the paraffins with an isomerization catalyst at isomerization conditions. Additionally, the process requires the injection of a nitrogen containing compound such as an amine, e.g., t-butylamine, and raising the operating temperature by about 20.degree. C. to about 150.degree. C. The effect of these modifications is to provide improved selectivity and sulfur resistance to the catalyst.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: May 18, 1999
    Assignee: UOP LLC
    Inventor: Leonid B. Galperin