Patents by Inventor Leonid Modestovich Kustov

Leonid Modestovich Kustov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170050178
    Abstract: Oxidative dehydrogenation catalysts comprising MoVNbTeO having improved consistency of composition and a 25% conversion of ethylene at less than 420° C. and a selectivity to ethylene above 95% are prepared by treating the catalyst precursor with H2O2 in an amount equivalent to 0.30-2.8 mL H2O2 of a 30% solution per gram of catalyst precursor prior to calcining.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 23, 2017
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, David Jeffrey Sullivan, Hanna Drag, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina
  • Patent number: 9550709
    Abstract: In the operation of an oxidative dehydrogenation (ODH) process, it is desirable to remove oxygen in the product stream for a number of reasons, including to reduce oxidation of the product. This may be achieved by having several pre-reactors upstream of the main reactor having a catalyst system containing labile oxygen. The feed passes through one or more reactors saturated with labile oxygen. When the labile oxygen is consumed through a valve system, the pre-reactor accepts product from the main reactor and complexes reactive oxygen in the product stream until the catalyst system is saturated with labile oxygen. Then the reactor becomes a pre-reactor and another pre-reactor becomes a scavenger.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 24, 2017
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, Edward Christopher Foy, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina
  • Patent number: 9545610
    Abstract: Oxidative dehydrogenation of paraffins to olefins provides a lower energy route to produce olefins. Oxidative dehydrogenation processes may be integrated with a number of processes in a chemical plant such as polymerization processes, manufacture of glycols, and carboxylic acids and esters. Additionally, oxidative dehydrogenation processes can be integrated with the back end separation process of a conventional steam cracker to increase capacity at reduced cost.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: January 17, 2017
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Xiaoliang Gao, Edward Christopher Foy, Claire Jeannine Ennis
  • Publication number: 20150141727
    Abstract: In the operation of an oxidative dehydrogenation (ODH) process, it is desirable to remove oxygen in the product stream for a number of reasons, including to reduce oxidation of the product. This may be achieved by having several pre-reactors upstream of the main reactor having a catalyst system containing labile oxygen. The feed passes through one or more reactors saturated with labile oxygen. When the labile oxygen is consumed through a valve system, the pre-reactor accepts product from the main reactor and complexes reactive oxygen in the product stream until the catalyst system is saturated with labile oxygen. Then the reactor becomes a pre-reactor and another pre-reactor becomes a scavenger.
    Type: Application
    Filed: October 27, 2014
    Publication date: May 21, 2015
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, Edward Christopher Foy, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina
  • Patent number: 8846996
    Abstract: The present invention provides a process for the manufacture of an efficient and robust catalyst for the oxidative dehydrogenation of paraffins to olefins, preferably lower C2-4 paraffins. The present invention provides a process for the preparation of an oxidative dehydrogenation catalyst of C2-4 paraffins to olefins comprising comminuting: from 10 to 99 weight % of a mixed oxide catalyst of the formula VxMoyNbzTemMenOp, wherein Me is a metal selected from the group consisting of Ta, Ti, W, Hf, Zr, Sb and mixtures thereof; with from 90 to 1 weight % of an inert matrix selected from oxides of titanium, zirconia, aluminum, magnesium, yttria, lantana, silica and their mixed compositions or a carbon matrix to produce particles having a size from 1 to 100 microns and forming the resulting particles into pellets having a size from 0.1 to 2 mm.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Tatyana Nikolaevna Kucherova, Vera Ilynichna Isaeva, Andrzej Krzywicki, Haiyong Cai
  • Publication number: 20140249339
    Abstract: Oxidative dehydrogenation of paraffins to olefins provides a lower energy route to produce olefins. Oxidative dehydrogenation processes may be integrated with a number of processes in a chemical plant such as polymerization processes, manufacture of glycols, and carboxylic acids and esters. Additionally, oxidative dehydrogenation processes can be integrated with the back end separation process of a conventional steam cracker to increase capacity at reduced cost.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Xiaoliang Gao, Edward Christopher Foy, Claire Jeannine Ennis
  • Patent number: 8642825
    Abstract: The present invention provides a continuous process for the oxidative dehydrogenation of ethane to ethylene using a mixed oxide catalyst supported onto a ceramic membrane by supplying an oxygen containing gas (air or pure oxygen) and pure ethane to the opposite sides of the membrane, so that the paraffin and the oxygen do not directly mix in the reactor.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 4, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Vasily Simanzhenkov, Andrzej Krzywicki
  • Publication number: 20130072737
    Abstract: The present invention provides a continuous process for the oxidative dehydrogenation of ethane to ethylene using a mixed oxide catalyst supported onto a ceramic membrane by supplying an oxygen containing gas (air or pure oxygen) and pure ethane to the opposite sides of the membrane, so that the paraffin and the oxygen do not directly mix in the reactor.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Vasily Simanzhenkov, Andrzej Krzywicki
  • Publication number: 20120016171
    Abstract: The present invention provides a process for the manufacture of an efficient and robust catalyst for the oxidative dehydrogenation of paraffins to olefins, preferably lower C2-4 paraffins. The present invention provides a process for the preparation of an oxidative dehydrogenation catalyst of C2-4 paraffins to olefins comprising comminuting: from 10 to 99 weight % of a mixed oxide catalyst of the formula VxMoyNbzTemMenOp, wherein Me is a metal selected from the group consisting of Ta, Ti, W, Hf, Zr, Sb and mixtures thereof; with from 90 to 1 weight % of an inert matrix selected from oxides of titanium, zirconia, aluminum, magnesium, yttria, lantana, silica and their mixed compositions or a carbon matrix to produce particles having a size from 1 to 100 microns and forming the resulting particles into pellets having a size from 0.1 to 2 mm.
    Type: Application
    Filed: February 22, 2010
    Publication date: January 19, 2012
    Applicant: Nova Chemicals (International) S.A.
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Tatyana Nikolaevna Kucherova, Vera Ilynichna Isaeva, Andrzej Krzywicki, Haiyong Cai
  • Publication number: 20110245562
    Abstract: The present invention provides a continuous process for the oxidative dehydrogenation of a lower paraffin to a lower olefin, preferably alpha olefin by sequentially providing pulses of an oxygen containing gas, an inert gas, the paraffin, and inert gas in the presence of a catalyst that preferably has the ability to hold and release oxygen, so that the paraffin and the oxygen do not directly mix in the reactor.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Alexander Yurievich Stakheev, Ilya Mikhailovich Sinev, Andrzej Krzywicki
  • Publication number: 20110245571
    Abstract: The present invention provides a process for the oxidative dehydrogenation of a paraffin such as ethane to the corresponding alkene such as ethylene in which the alkane is contacted with a bed of oxidative dehydrogenation catalyst having an enhanced labile oxygen content in the crystal structure on an inert support optionally with a regenerable metallic oxidant composition in the absence of a gaseous feed containing oxygen.
    Type: Application
    Filed: March 17, 2011
    Publication date: October 6, 2011
    Inventors: Leonid Modestovich Kustov, Aleksey Victorovich Kucherov, Elena Dmitrievna Finashina, Alexander Yurievich Stakheev, Ilya Mikhailovich Sinev, Andrzej Krzywicki
  • Publication number: 20030109767
    Abstract: A process for the conversion of paraffin hydrocarbon feed stock via skeletal isomerisation by contacting this feed with a catalyst comprised of an ionic liquid formed from an N-containing heterocyclic and/or N-containing aliphatic organic cation and an inorganic anion derived from metal halides.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 12, 2003
    Inventors: Tamara Vladimirovna Vasina, Leonid Modestovich Kustov, Vladislav Anatol?apos;evich Ksenofontov, Yurii Egorovich Zubarev, Jindrich Houzvicka, John Zavilla
  • Patent number: 6414197
    Abstract: A method and a catalyst are described for selective oxidation of aromatic compounds (e.g., benzene and its derivatives) into hydroxylated aromatic compounds (e.g., corresponding phenols). For example, benzene can be converted into phenol with a yield of at least 30-40%, and a selectivity on the basis of benzene of at least 95-97%. The selectivity for this reaction based on N2O is at least 90-95%. Therefore, no substantial N2O decomposition or consumption for complete benzene oxidation to CO+CO2 or other side products occurs. Similar results are obtained with benzene derivatives (e.g., fluorobenzene, difluorobenzene, phenol), although the selectivity is somewhat lower in the case of derivatives (e.g., about 80-85% in the case of fluorosubstituted benzenes). A preferred catalyst for this process is a composition containing a high-silica pentasil-type zeolite (e.g, an HZSM-5 type zeolite) which contains no purposefully introduced additives such as transition or noble metals.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: July 2, 2002
    Assignee: General Electric Company
    Inventors: Leonid Modestovich Kustov, Viktor Ignatyevich Bogdan, Vladimir Borisovich Kazansky
  • Patent number: 6388145
    Abstract: The invention relates to the field of organic synthesis, more specifically to a method for the production of phenol and cresol by the direct selective oxidation of benzene and toluene with nitrous oxide in the presence of a heterogeneous catalyst. Commercial high-silica zeolites are first calcined at a temperature of 500-950° C. sufficient to dehydroxylate it. It is then modified by the addition of modifying agents—zinc ions or zinc oxide—by applying a zinc compound to it. The catalyst is then activated in air or an inert gas at 300-850° C. The mixture of benzene or toluene with the nitrous oxide is brought into contact with the modified catalyst at 225 to 500° C.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: May 14, 2002
    Assignee: General Electric Company
    Inventors: Leonid Modestovich Kustov, Andrei Leonidovich Tarasov, Aleksandr Arunovich Tyrlov, Viktor Ignatyevich Bogdan
  • Publication number: 20020042544
    Abstract: The invention relates to the field of organic synthesis, more specifically to a method for the production of phenol and cresol by the direct selective oxidation of benzene and toluene with nitrous oxide in the presence of a heterogeneous catalyst. Commercial high-silica zeolites are first calcined at a temperature of 500-950° C. sufficient to dehydroxylate it. It is then modified by the addition of modifying agents—zinc ions or zinc oxide—by applying a zinc compound to it. The catalyst is then activated in air or an inert gas at 300-850° C. The mixture of benzene or toluene with the nitrous oxide is brought into contact with the modified catalyst at 225 to 500° C.
    Type: Application
    Filed: March 23, 2000
    Publication date: April 11, 2002
    Inventors: Leonid Modestovich Kustov, Andrei Leonidovich Tarasov, Aleksandr Arunovich Tyrlov, Viktor Ignatyevich Bogdan
  • Publication number: 20020040168
    Abstract: A method and a catalyst are described for selective oxidation of aromatic compounds (e.g., benzene and its derivatives) into hydroxylated aromatic compounds (e.g., corresponding phenols). For example, benzene can be converted into phenol with a yield of at least 30-40%, and a selectivity on the basis of benzene of at least 95-97%. The selectivity for this reaction based on N2O is at least 90-95%. Therefore, no substantial N2O decomposition or consumption for complete benzene oxidation to CO+CO2 or other side products occurs. Similar results are obtained with benzene derivatives (e.g., fluorobenzene, difluorobenzene, phenol), although the selectivity is somewhat lower in the case of derivatives (e.g., about 80-85% in the case of fluorosubstituted benzenes). A preferred catalyst for this process is a composition containing a high-silica pentasil-type zeolite (e.g, an HZSM-5 type zeolite) which contains no purposefully introduced additives such as transition or noble metals.
    Type: Application
    Filed: May 13, 1998
    Publication date: April 4, 2002
    Inventors: LEONID MODESTOVICH KUSTOV, VIKTOR IGNATYEVICH BOGDAN, VLADIMIR BORISOVICH KAZANSKY
  • Publication number: 20010049330
    Abstract: A method and a catalyst are described for selective oxidation of aromatic compounds (e.g., benzene and its derivatives) into hydroxylated aromatic compounds (e.g., corresponding phenols). For example, benzene can be converted into phenol with a yield of at least 30-40%, and a selectivity on the basis of benzene of at least 95-97%. The selectivity for this reaction based on N2O is at least 90-95%. Therefore, no substantial N2O decomposition or consumption for complete benzene oxidation to CO+CO2 or other side products occurs. Similar results are obtained with benzene derivatives (e.g., fluorobenzene, difluorobenzene, phenol), although the selectivity is somewhat lower in the case of derivatives (e.g., about 80-85% in the case of fluorosubstituted benzenes). A preferred catalyst for this process is a composition containing a high-silica pentasil-type zeolite (e.g., an HZSM-5 type zeolite) which contains no purposefully introduced additives such as transition or noble metals.
    Type: Application
    Filed: July 9, 2001
    Publication date: December 6, 2001
    Inventors: Leonid Modestovich Kustov, Viktor Ignatyevich Bogdan, Vladimir Borisovich Kazansky