Patents by Inventor Leqing Zhu

Leqing Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10542249
    Abstract: A stereoscopic video generation method based on 3D convolution neural network is disclosed, which is able to convert existing 2D video sources into stereoscopic videos. The method includes preparing the training data, dividing the training video sources into left eye view sequences and right eye view sequences; and then processing the left eye image sequences through shot segmentation via fuzzy C-means clustering method, calculating a mean image of all left eye images, subtracting the mean image from the left eye images, taking the right eye images as a training target; training the obtained 3D convolution neural network through the training data; processing the 2D video sources which need to be converted into stereoscopic videos in the same way as training set, inputting to the trained 3D convolution neural network to obtain the right eye view image sequences of the 2D videos; and finally combining the two to be stereoscopic videos.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 21, 2020
    Assignee: ZHEJIANG GONGSHANG UNIVERSITY
    Inventors: Xun Wang, Leqing Zhu, Huiyan Wang
  • Publication number: 20190379883
    Abstract: A stereoscopic video generation method based on 3D convolution neural network is disclosed, which is able to convert existing 2D video sources into stereoscopic videos. The method includes preparing the training data, dividing the training video sources into left eye view sequences and right eye view sequences; and then processing the left eye image sequences through shot segmentation via fuzzy C-means clustering method, calculating a mean image of all left eye images, subtracting the mean image from the left eye images, taking the right eye images as a training target; training the obtained 3D convolution neural network through the training data; processing the 2D video sources which need to be converted into stereoscopic videos in the same way as training set, inputting to the trained 3D convolution neural network to obtain the right eye view image sequences of the 2D videos; and finally combining the two to be stereoscopic videos.
    Type: Application
    Filed: December 29, 2016
    Publication date: December 12, 2019
    Inventors: Xun Wang, Leqing Zhu, Huiyan Wang
  • Patent number: 10353271
    Abstract: A depth estimation method for a monocular image based on a multi-scale CNN and a continuous CRF is disclosed in this invention. A CRF module is adopted to calculate a unary potential energy according to the output depth map of a DCNN, and the pairwise sparse potential energy according to input RGB images. MAP (maximum a posteriori estimation) algorithm is used to infer the optimized depth map at last. The present invention integrates optimization theories of the multi-scale CNN with that of the continuous CRF. High accuracy and a clear contour are both achieved in the estimated depth map; the depth estimated by the present invention has a high resolution and detailed contour information can be kept for all objects in the scene, which provides better visual effects.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 16, 2019
    Assignee: ZHEJIANG GONGSHANG UNIVERSITY
    Inventors: Xun Wang, Leqing Zhu, Huiyan Wang
  • Publication number: 20180231871
    Abstract: A depth estimation method for a monocular image based on a multi-scale CNN and a continuous CRF is disclosed in this invention. A CRF module is adopted to calculate a unary potential energy according to the output depth map of a DCNN, and the pairwise sparse potential energy according to input RGB images. MAP (maximum a posteriori estimation) algorithm is used to infer the optimized depth map at last. The present invention integrates optimization theories of the multi-scale CNN with that of the continuous CRF. High accuracy and a clear contour are both achieved in the estimated depth map; the depth estimated by the present invention has a high resolution and detailed contour information can be kept for all objects in the scene, which provides better visual effects.
    Type: Application
    Filed: December 14, 2016
    Publication date: August 16, 2018
    Inventors: Xun Wang, Leqing Zhu, Huiyan Wang