Patents by Inventor Leslie Bromberg

Leslie Bromberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9909491
    Abstract: A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5<?<4.0. In doing so, it creates an exothermic reaction, which results in the production of syngas. In addition, the system utilizes the energy from the exothermic reaction to rotate a shaft and also utilizes the heat in the syngas to heat the reactants. A mechanical power plant is in communication with the rotating shaft and can be used to produce oxygen, provide electricity or operate a compressor, as require. The hydrogen-rich gas is supplied to a chemical reactor, which converts the gas into a liquid fuel, such as methanol.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: March 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, William H. Green, Alexander Sappok, Daniel R. Cohn, Amrit Jalan
  • Patent number: 9873074
    Abstract: A cleaning system and method of cleaning filters that removes the ash in the plugged regions is disclosed. The filter is subjected to vibrations, which serve to loosen trapped and packed retentate from the filter. The loosened retentate is then captured by a collection bin. The cleaning system can be integral with the intended application, such as within an automobile. In another embodiment, the cleaning system is a separate cleaning station, where the filter is removing from its intended application, cleaned, and then reinstalled.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: January 23, 2018
    Assignee: CTS Corporation
    Inventors: Alexander Sappok, Leslie Bromberg
  • Publication number: 20180016998
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Daniel R. Cohn, John B. Haywood, Leslie Bromberg
  • Publication number: 20170363035
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9840980
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: December 12, 2017
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9810166
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: November 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Patent number: 9767948
    Abstract: Novel configurations to improve the performance of superconducting magnetic energy storage system are described. The use of poloidal grading of the conductor, enabled by the use of 2nd generation YBCO conductors, is described. Methods to improve system performance when limited by the critical field of the superconductor are described, using optimized thin winding pack and thick winding pack toroidal geometries, where a uniform or near uniform magnetic field can be generated in a torus. Configurations that minimize structural requirements, weight and costs are also described. Cryostat innovations useful with toroidal systems are provided.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: September 19, 2017
    Assignee: Novum Industria LLC
    Inventors: Leslie Bromberg, Philip C. Michael
  • Publication number: 20170211453
    Abstract: A radio frequency system and method for monitoring an engine-out exhaust emission constituent. The system comprises a housing containing the emission constituent, one or more radio frequency sensors extending into the housing and transmitting and receiving radio frequency signals, and a control unit for controlling the radio frequency signals and monitoring changes in the emission constituent based on changes in one or more parameters of the radio frequency signals. In one embodiment, the control unit measures a rate of change in one or more of the parameters of the radio frequency signals for monitoring a rate of change of the emission constituent including for example the emission rate, accumulation rate, and/or depletion rate of the emission constituent.
    Type: Application
    Filed: April 7, 2017
    Publication date: July 27, 2017
    Applicant: CTS Corporation
    Inventors: Alexander G. Sappok, Paul A. Ragaller, Leslie Bromberg, Andrew D. Herman
  • Patent number: 9708965
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 18, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 9711254
    Abstract: Toroidal superconducting magnets can be used as lightweight rotating bending magnets in hadron therapy gantries. The toroidal bending magnets are self-shielded and do not require ferromagnetic material for field modification or shielding, decreasing both the magnet system weight, as well as overall gantry weight. Achromatic magnet can be made by combining two of these bending magnets. The simple geometry may allow the use of higher fields, making it attractive for carbon, as well as proton.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: July 18, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Philip C. Michael
  • Publication number: 20170191431
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20170191430
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 9695784
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 4, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20170182447
    Abstract: A radio frequency sensing, control, and particulate matter diagnostics network and system and method and, more specifically, a radio frequency particulate filter diagnostics system comprising a housing including an inlet connected to a source of particulate matter, a particulate filter in the housing and adapted for filtering the particulate matter, and a radio frequency sensor adapted to detect conditions of abnormal particulate filter or system operation and including at least one radio frequency probe configured to be in contact with the housing for the particulate filter housing and adapted to receive radio frequency signals and a radio frequency control unit in communication with the radio frequency probe.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: CTS Corporation
    Inventors: Alexander G. Sappok, Paul A. Ragaller, Leslie Bromberg, Andrew D. Herman
  • Patent number: 9615441
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: April 4, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Alexey L. Radovinsky, Phillip C. Michael
  • Patent number: 9603235
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 21, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Alexey L. Radovinsky, Philip C. Michael
  • Publication number: 20170009162
    Abstract: A rotating heat regenerator is used to recover heat from the syngas at it exits the reactor vessel of a waste or biomass gasifier. In some embodiments, three or more streams are passed through the heat exchanger. One stream is the dirty syngas, which heats the rotating material. A second stream is a cold stream that is heated as it passes through the material. A third stream is a cleaning stream, which serves to remove particulates that are collected on the rotating material as the dirty syngas passes through it. This apparatus can also be used as an auto-heat exchanger, or it can exchange heat between separate flows in the gasifier process.
    Type: Application
    Filed: August 4, 2016
    Publication date: January 12, 2017
    Applicant: INENTEC INC.
    Inventors: Leslie Bromberg, Daniel R. Cohn, Jeffrey E. Surma, James A. Batdorf, David A. Lamar
  • Publication number: 20170002271
    Abstract: The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Applicant: INENTEC INC
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Publication number: 20160326971
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Application
    Filed: July 20, 2016
    Publication date: November 10, 2016
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Publication number: 20160319764
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Daniel R. Cohn, Leslie Bromberg