Patents by Inventor Leslie John Farthing

Leslie John Farthing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10926334
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 23, 2021
    Assignee: Tenneco Inc.
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Publication number: 20200156156
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Philippe BEAULIEU, Denis B. Christopherson, JR., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10563695
    Abstract: A bushing formed of different alloys selected to accommodate different operating conditions is provided. For example, the bushing could include an iron-based alloy in a portion of the bushing exposed to lower temperatures, and a cobalt-based alloy in a portion of the bushing exposed to higher temperatures. The first and second alloys could be axially or radially aligned. The iron based alloy includes 10 to 30 wt % Cr, 0 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 5 wt % W, 0 to 3 wt % C, 0 to 4 wt % V, 0 to 20 wt % Co, and a balance of Fe; and the cobalt based alloy includes 10 to 30 wt % Cr, 5 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 10 wt % W, 0 to 3 wt % V, 0.5 to 3 wt % C, and a balance of Co.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: February 18, 2020
    Assignee: Tenneco Inc.
    Inventors: Leslie John Farthing, Jens Wellmann
  • Patent number: 10543535
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 28, 2020
    Assignees: Tenneco Inc., Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Publication number: 20190210105
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Denis Boyd Christopherson, JR., LESLIE JOHN FARTHING, JEREBY RAYMOND KOTH
  • Patent number: 10232438
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 19, 2019
    Assignee: Tenneco Inc
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Patent number: 10124411
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 13, 2018
    Assignees: Federal-Mogul LLC, La Corporation de l'Ecole Polytechnique de Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance
  • Publication number: 20180298947
    Abstract: A bushing formed of different alloys selected to accommodate different operating conditions is provided. For example, the bushing could include an iron-based alloy in a portion of the bushing exposed to lower temperatures, and a cobalt-based alloy in a portion of the bushing exposed to higher temperatures. The first and second alloys could be axially or radially aligned. The iron based alloy includes 10 to 30 wt % Cr, 0 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 5 wt % W, 0 to 3 wt % C, 0 to 4 wt % V, 0 to 20 wt % Co, and a balance of Fe; and the cobalt based alloy includes 10 to 30 wt % Cr, 5 to 21 wt % Ni, 0 to 10 wt % Mo, 0 to 10 wt % W, 0 to 3 wt % V, 0.5 to 3 wt % C, and a balance of Co.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 18, 2018
    Inventors: Leslie John FARTHING, Jens WELLMANN
  • Publication number: 20180169751
    Abstract: A thermometric powder metal material for testing to replicate an actual powder material during use of the actual powder metal material in an internal combustion engine is provided. The thermometric powder metal material includes pores and has a decrease in hardness as a function of temperature according to the following equation: D Hardness/D Temperature=>0.5 HV/° C. The properties of the actual powder metal material, when the actual powder metal is used in an internal combustion engine, can be estimated using the thermometric powder metal material by first adjusting the thermal conductivity of the thermometric powder metal material or controlling the porosity of the thermometric powder metal material to replicate the actual powder metal material, and then subjecting thermometric powder metal material to an engine test. For example, the thermal conductivity can be adjusted by infiltrating the thermometric powder metal material with copper.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Philippe BEAULIEU, Denis B. CHRISTOPHERSON, JR., Leslie John FARTHING, Gilles L'ESPERANCE, Olivier SIOUI-LATULIPPE
  • Publication number: 20180001387
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: September 13, 2017
    Publication date: January 4, 2018
    Inventors: Philippe BEAULIEU, Denis B. CHRISTOPHERSON, JR., Leslie John FARTHING, Todd SCHOENWETTER, Gilles L'ESPERANCE
  • Publication number: 20170129016
    Abstract: A powder metal steel alloy composition for high wear and temperature applications is made by water atomizing a molten steel alloy composition containing C in an amount of at least 3.0 wt %; at least one carbide-forming alloy element selected from the group consisting of: Cr, V, Mo or W; an O content less than about 0.5 wt %, and the balance comprising essentially Fe apart from incidental impurities. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming element(s) to oxidize during water atomization. The alloy elements are thus not tied up as oxides and are available to rapidly and readily form carbides in a subsequent sintering stage. The carbon, present in excess, is also available for diffusing into one or more other admixed powders that may be added to the prealloyed powder during sintering to control microstructure and properties of the final part.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 11, 2017
    Inventors: DENIS B. CHRISTOPHERSON, JR., LESLIE JOHN FARTHING, TODD SCHOENWETTER, GILLES L'ESPERANCE, PHILIPPE BEAULIEU
  • Patent number: 9624568
    Abstract: A thermal spray powder is provided for use in a thermal spray technique, such as flame spraying, plasma spraying, cold spraying, and high velocity oxygen fuel spraying (HVOF). The thermal spray powder is formed by water or gas atomization and comprises 3.0 to 7.0 wt. % carbon, 10.0 to 25.0 wt. % chromium, 1.0 to 5.0 wt. % tungsten, 3.5 to 7.0 wt. % vanadium, 1.0 to 5.0 wt. % molybdenum, not greater than 0.5 wt. % oxygen, and at least 40.0 wt. % iron, based on the total weight of the thermal spray powder. The thermal spray powder can be applied to a metal body, such as a piston or piston ring, to form a coating. The thermal spray powder can also provide a spray-formed part.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 18, 2017
    Assignees: Federal-Mogul Corporation
    Inventors: Denis B. Christopherson, Jr., Gilles L'Esperance, Jeremy Koth, Philippe Beaulieu, Leslie John Farthing, Todd Schoenwetter
  • Patent number: 9546412
    Abstract: A powder metal steel alloy composition for high wear and temperature applications is made by water atomizing a molten steel alloy composition containing C in an amount of at least 3.0 wt %; at least one carbide-forming alloy element selected from the group consisting of: Cr, V, Mo or W; an O content less than about 0.5 wt %, and the balance comprising essentially Fe apart from incidental impurities. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming element(s) to oxidixe during water atomization. The alloy elements are thus not tied up as oxides and are available to rapidly and readily form carbides in a subsequent sintering stage. The carbon, present in excess, is also available for diffusing into one or more other admixed powders that may be added to the prealloyed powder during sintering to control microstructure and properties of the final part.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: January 17, 2017
    Assignee: Federal-Mogul Corporation
    Inventors: Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance, Philippe Beaulieu
  • Publication number: 20160001369
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Philippe Beaulieu, Denis B. Christopherson, JR., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance
  • Patent number: 9162285
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2015
    Assignees: Federal-Mogul Corporation, La Corporation De L'Ecole Polytechnique De Montreal
    Inventors: Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance, Philippe Beaulieu
  • Publication number: 20140301886
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Inventors: Denis Boyd Christopherson, JR., Leslie John Farthing, Jereby Raymond Koth
  • Patent number: 8801828
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 12, 2014
    Assignee: Federal-Mogul Corporation
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Publication number: 20130028780
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Application
    Filed: August 3, 2012
    Publication date: January 31, 2013
    Inventors: Denis Boyd Christopherson, JR., Leslie John Farthing, Jeremy Raymond Koth
  • Patent number: 8277533
    Abstract: A most preferred composition for the mixture, prior to sintering into an article (ideally a valve seat insert), is as follows: 35% hard phase, 65% matrix (excepting incidental impurities), the hard phase component being 2.2% C, 29.1% Cr, 4.9% Co, 5.3% Ni, 20.2% W with the balance being Fe and allowing less than 2% for one or more machinability aids and solid lubricants, and the matrix component being one of a high chrome steel powder (e.g. 18% Cr, 1% Ni, 2.5% Mo, balance Fe), a low alloy steel powder (3% Cu, 1% C, balance Fe; 3% Cr, 0.5% Mo, 1% C, balance Fe; 4% Ni, 1.5% Cu, 0.5% Mo, 1% C, balance Fe; 4% Ni, 2% Cu, 1.4% Mo, 1% C, balance Fe), or a tool steel powder (5% Mo, 6% W, 4% Cr, 2% V, 1% C, balance Fe), or a low-alloy steel powder as above but which issued in conjunction with a copper infiltration process during sintering.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: October 2, 2012
    Assignee: Federal-Mogul Sintered Products Limited
    Inventors: Leslie John Farthing, Paritosh Maulik
  • Patent number: 8257462
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 4, 2012
    Assignee: Federal-Mogul Corporation
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth