Patents by Inventor Leslie S. Johnson

Leslie S. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240233818
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Application
    Filed: February 15, 2024
    Publication date: July 11, 2024
    Inventors: Liqin LIU, Chia-Ying Kao LAM, Gundo DIEDRICH, Leslie S. JOHNSON, Paul A. MOORE, Ezio BONVINI
  • Patent number: 12024569
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: July 2, 2024
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20240182559
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Application
    Filed: October 11, 2023
    Publication date: June 6, 2024
    Inventors: Leslie S. JOHNSON, Ling HUANG, Gurunadh Reddy CHICHILI, Kalpana SHAH, Chia-Ying Kao LAM, Stephen James BURKE, Liqin LIU, Paul A. MOORE, Ezio BONVINI, Bhaswati BARAT
  • Publication number: 20240124582
    Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Application
    Filed: November 21, 2023
    Publication date: April 18, 2024
    Inventors: Ross LA MOTTE-MOHS, Kalpana SHAH, Douglas H. SMITH, Leslie S. JOHNSON, Paul A. MOORE, Ezio BONVINI, Scott KOENIG
  • Publication number: 20240117036
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Tri-Specific Binding Molecule is preferably characterized in possessing binding domains that permit it to immunospecifically bind to: (1) an epitope of a first Cancer Antigen, (2) an epitope of a second Cancer Antigen, and (3) an epitope of a molecule that is expressed on the surface of an immune system effector cell, and are thus capable of localizing an immune system effector cell to a cell that expresses a Cancer Antigen, so as to thereby facilitate the killing of such cancer cell.
    Type: Application
    Filed: May 19, 2023
    Publication date: April 11, 2024
    Inventors: Ezio BONVINI, Paul A. MOORE, Jonathan C. LI, Leslie S. JOHNSON, Kalpana SHAH
  • Patent number: 11942149
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: March 26, 2024
    Assignee: MACROGENICS, INC.
    Inventors: Liqin Liu, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Publication number: 20240084015
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 14, 2024
    Inventors: Leslie S. JOHNSON, Gurunadh Reddy CHICHILI, Kalpana SHAH, Ross LA MOTTE-MOHS, Paul A. MOORE, Ezio BONVINI, Scott KOENIG
  • Publication number: 20240043537
    Abstract: The present invention is directed to DA×CD3 Binding Molecules comprising a vCD3-Binding Domain, which comprises a CDRH1 Domain, a CDRH2 Domain, a CDRH3 Domain, a CDRL1 Domain, a CDRL2 Domain, and a CDRL3 Domain, at least one of which differs in amino acid sequence from the amino acid sequence of the corresponding CDR of a rCD3-Binding Domain, wherein the DA×CD3 Binding Molecule comprising such vCD3-Binding Domain exhibits an altered affinity for CD3, relative to a DA×CD3 Binding Molecule comprising such rCD3-Binding Domain. The invention particularly concerns to such DA×CD3 Binding Molecules comprising a vCD3-Binding Domain which exhibit reduced affinity for CD3 and are capable of mediating redirected killing of target cells expressing a DA and exhibit lower levels of cytokine release relative to a DA×CD3 Binding Molecule comprising a rCD3-Binding Domain.
    Type: Application
    Filed: May 22, 2023
    Publication date: February 8, 2024
    Inventors: Ezio BONVINI, Ling HUANG, Chia-Ying Kao LAM, Gurunadh Reddy CHICHILI, Ralph Froman ALDERSON, Paul A. MOORE, Leslie S. JOHNSON
  • Patent number: 11884744
    Abstract: The disclosure relates to compounds specific for IL23A and BAFF, compositions comprising the compounds, and methods of use thereof. Nucleic acids, cells, and methods of production related to the compounds and compositions are also disclosed.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 30, 2024
    Assignees: Boehringer Ingelheim International GmbH, MacroGenics, Inc.
    Inventors: Sanjaya Singh, Qi Pan, Rachel Rebecca Barrett, Leslie S. Johnson, Pankaj Gupta, Sarah Low, Haixia Wu
  • Patent number: 11858991
    Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 2, 2024
    Assignee: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20230399399
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: March 20, 2023
    Publication date: December 14, 2023
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Patent number: 11840571
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: December 12, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20230382988
    Abstract: The disclosure relates to compounds specific for IL23A and TNF-alpha, compositions comprising the compounds, and methods of use thereof. Nucleic acids, cells, and methods of production related to the compounds and compositions are also disclosed.
    Type: Application
    Filed: March 6, 2023
    Publication date: November 30, 2023
    Inventors: Rachel Rebecca Barrett, Leslie S. Johnson, Sanjaya Singh, Kathleen Last-Barney, Daw-Tsun Shih, Patricia Giblin, Scott Brodeur, Nelamangala Nagaraja
  • Publication number: 20230382996
    Abstract: The present invention is directed to diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers. The diabody molecules of the invention comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as, but not limited to, disulfide bonding of cysteine residues located within each polypeptide chain. In particular embodiments, the diabody molecules of the present invention further comprise an Fc region, which allows antibody-like functionality to engineered into the molecule.
    Type: Application
    Filed: February 6, 2023
    Publication date: November 30, 2023
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 11820818
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 21, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Publication number: 20230357404
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mA.b 5, PD-1 mA.b 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1 -binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1 -binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Application
    Filed: February 24, 2023
    Publication date: November 9, 2023
    Applicant: MACROGENICS, INC.
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Patent number: 11795226
    Abstract: The present invention is directed to molecules (e.g., an antibody, a diabody, an scFv, an antibody, a TandAb, etc.) capable of binding an epitope of human CD16 (a “CD16 Binding Molecule”). The present invention is further directed to CD 16 Binding Molecules that are capable of binding an epitope of human CD16 and one or more epitope(s) of a Disease Antigen (“DA”) (e.g., a “CD16×DA Binding Molecule”). The present invention is particularly directed to such CD16×DA Binding Molecules that are antibodies, or that comprise an Epitope Binding Domain thereof, or are diabodies (including DART® diabodies), bispecific antibodies, TandAbs, other multispecific binding molecules (e.g., trivalent TRIDENT™ molecules), etc. The invention particularly concerns CD16×DA Binding Molecules that are capable of binding a Disease Antigen that is a Cancer Antigen or a Pathogen-Associated Antigen in addition to being able to bind CD 16.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 24, 2023
    Assignee: MacroGenics, Inc.
    Inventors: Gundo Diedrich, Liqin Liu, Hua Watson Li, Leslie S. Johnson
  • Publication number: 20230272084
    Abstract: The present invention is directed to novel B7-H3-binding molecules capable of binding to human and non-human B7-H3, and in particular to such molecules that are cross-reactive with B7-H3 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to B7-H3-binding molecules that comprise Variable Light Chain and/or Variable Heavy Chain (VH) Domains that have been humanized and/or deimmunized so as to exhibit a reduced immunogenicity upon administration to recipient subjects. The invention particularly pertains to bispecific, trispecific or multispecific B7-H3-binding molecules, including bispecific diabodies, BiTEs, bispecific antibodies, trivalent binding molecules, etc. that comprise: (i) such B7-H3-binding Variable Domains and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Application
    Filed: January 6, 2023
    Publication date: August 31, 2023
    Inventors: Deryk T. LOO, Ling HUANG, Leslie S. JOHNSON, Thomas SON, Juniper A. SCRIBNER, Ezio BONVINI
  • Patent number: 11697684
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Tri-Specific Binding Molecule is preferably characterized in possessing binding domains that permit it to immunospecifically bind to: (1) an epitope of a first Cancer Antigen, (2) an epitope of a second Cancer Antigen, and (3) an epitope of a molecule that is expressed on the surface of an immune system effector cell, and are thus capable of localizing an immune system effector cell to a cell that expresses a Cancer Antigen, so as to thereby facilitate the killing of such cancer cell.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 11, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Ezio Bonvini, Paul A. Moore, Jonathan C. Li, Leslie S. Johnson, Kalpana Shah
  • Patent number: 11685781
    Abstract: The present invention is directed to DA×CD3 Binding Molecules comprising a vCD3-Binding Domain, which comprises a CDRHI Domain, a CDRH2 Domain, a CDRH3 Domain, a CDRL I Domain, a CDRL2 Domain, and a CDRL3 Domain, at least one of which differs in amino acid sequence from the amino acid sequence of the corresponding CDR of a rCD3-Binding Domain, wherein the DA×CD3 Binding Molecule comprising such vCD3-Binding Domain exhibits an altered affinity for CD3, relative to a DA×CD3 Binding Molecule comprising such rCD3-Binding Domain. The invention particularly concerns to such DA×CD3 Binding Molecules comprising a vCD3-Binding Domain which exhibit reduced affinity for CD3 and are capable of mediating redirected killing of target cells expressing a DA and exhibit lower levels of cytokine release relative to a DA×CD3 Binding Molecule comprising a rCD3-Binding Domain.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 27, 2023
    Inventors: Ezio Bonvini, Ling Huang, Chia-Ying Kao Lam, Gurunadh Reddy Chichili, Ralph Froman Alderson, Paul A. Moore, Leslie S. Johnson