Patents by Inventor Leslie S. Johnson

Leslie S. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140377181
    Abstract: The present invention provides molecules, including IgGs, non-IgG immunoglobulins, proteins and non-protein agents, that have increased in vivo half-lives due to the presence of an IgG constant domain, or a portion thereof that binds the FcRn, having one or more amino acid modifications that increase the affinity of the constant domain or fragment for FcRn. Such proteins and molecules with increased half-lives have the advantage that smaller amounts and or less frequent dosing is required in the therapeutic, prophylactic or diagnostic use of such molecules.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MEDIMMUNE, LLC
    Inventors: William Dall'Acqua, Leslie S. Johnson, Elizabeth Sally Ward Ober
  • Publication number: 20140328836
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20140328750
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Patent number: 8802093
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: August 12, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Patent number: 8802091
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 12, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Patent number: 8795667
    Abstract: The present invention relates to improved compositions for the prevention and treatment of smallpox, and in particular to the use of compositions containing an antibody that binds to an epitope found on the MV form of the smallpox virus and an antibody that binds to an epitope found on the EV form of the smallpox virus. The invention relates to such compositions, especially to non-blood derived antibody compositions, such as chimeric or humanized antibodies, and to methods for their use in imparting passive immunity against smallpox infection to individuals at risk of smallpox virus infection or who exhibit smallpox.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 5, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 8795661
    Abstract: The present invention provides molecules, including IgGs, non-IgG immunoglobulins, proteins and non-protein agents, that have increased in vivo half-lives due to the presence of an IgG constant domain, or a portion thereof that binds the FcRn, having one or more amino acid modifications that increase the affinity of the constant domain or fragment for FcRn. Such proteins and molecules with increased half-lives have the advantage that smaller amounts and or less frequent dosing is required in the therapeutic, prophylactic or diagnostic use of such molecules.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 5, 2014
    Assignees: MedImmune, LLC, Board of Regents, The University of Texas System
    Inventors: William Dall'Acqua, Leslie S. Johnson, Elizabeth Sally Ward Ober
  • Patent number: 8784808
    Abstract: The present invention relates to antibodies or fragments thereof that bind Fc?RIIB with greater affinity than said antibodies or fragments binds Fc?RIIA. The invention encompasses the use of such antibodies or fragments for the treatment of diseases related to loss of balance of Fc receptor mediated signaling, such as cancer, autoimmune diseases, inflammatory diseases or IgE-mediated allergic disorders. The present invention also encompasses the use of such antibodies and fragments in combination with other cancer therapies, methods of enhancing the therapeutic effect of therapeutic antibodies, and methods of enhancing efficacy of vaccine compositions.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 22, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang
  • Patent number: 8785599
    Abstract: The present invention relates to antibodies or fragments thereof that specifically bind Fc?RIIB, particularly human Fc?RIIB, with greater affinity than the antibodies or fragments thereof bind Fc?RIIA, particularly human Fc?RIIA. The present invention also provides the use of an anti-Fc?RIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: July 22, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Robyn Gerena
  • Publication number: 20140099318
    Abstract: CD3-binding molecules capable of binding to human and non-human CD3, and in particular to such molecules that are cross-reactive with CD3 of a non-human mammal (e.g., a cynomolgus monkey) are presented. Uses of such antibodies and antigen-binding fragments in the treatment of cancer, autoimmune and/or inflammatory diseases and other conditions are presented.
    Type: Application
    Filed: May 16, 2012
    Publication date: April 10, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Ling Huang, Leslie S. Johnson
  • Patent number: 8663634
    Abstract: The present invention provides methods of treating, preventing or ameliorating the symptoms of T cell-mediated immunological diseases, particularly autoimmune diseases, through the use of anti-CD3 antibodies. In particular, the methods of the invention provide for administration of antibodies that specifically bind the epsilon subunit within the human CD3 complex. Such antibodies modulate the T cell receptor/alloantigen interaction and, thus, regulate the T cell mediated cytotoxicity associated with autoimmune disorders. Additionally, the invention provides for modification of the anti-CD3 antibodies such that they exhibit reduced or eliminated effector function and T cell activation as compared to non-modified anti-CD3 antibodies.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 4, 2014
    Assignee: MacroGenics, Inc.
    Inventors: Scott Koenig, Ronald Wilder, Ezio Bonvini, Leslie S. Johnson
  • Publication number: 20140017237
    Abstract: This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 16, 2014
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, ling Huang
  • Publication number: 20130295121
    Abstract: Diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers are disclosed. The diabody molecules comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as disulfide bonding of cysteine residues located within each polypeptide chain. The diabody molecules may further comprise an Fc region, which allows antibody-like functionality to be engineered into the molecule.
    Type: Application
    Filed: July 29, 2011
    Publication date: November 7, 2013
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Godfrey Jonah Anderson Rainey
  • Publication number: 20130272964
    Abstract: The present invention provides molecules, including IgGs, non-IgG immunoglobulins, proteins and non-protein agents, that have increased in vivo half-lives due to the presence of an IgG constant domain, or a portion thereof that binds the FcRn, having one or more amino acid modifications that increase the affinity of the constant domain or fragment for FcRn. Such proteins and molecules with increased half-lives have the advantage that smaller amounts and or less frequent dosing is required in the therapeutic, prophylactic or diagnostic use of such molecules.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 17, 2013
    Inventors: WILLIAM DALL'ACQUA, LESLIE S. JOHNSON, ELIZABETH SALLY WARD OBER
  • Patent number: 8475792
    Abstract: The present invention provides molecules, including IgGs, non-IgG immunoglobulins, proteins and non-protein agents, that have increased in vivo half-lives due to the presence of an IgG constant domain, or a portion thereof that binds the FcRn, having one or more amino acid modifications that increase the affinity of the constant domain or fragment for FcRn. Such proteins and molecules with increased half-lives have the advantage that smaller amounts and or less frequent dosing is required in the therapeutic, prophylactic or diagnostic use of such molecules.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 2, 2013
    Assignees: MedImmune, LLC, Board of Regents, The Texas University System
    Inventors: William Dall'Acqua, Leslie S. Johnson, Elizabeth Sally Ward Ober
  • Publication number: 20130149236
    Abstract: The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 13, 2013
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Paul A. Moore, Ling Huang, Deryk T. Loo, Francine Zhifen Chen
  • Patent number: 8323962
    Abstract: The present invention provides molecules, including IgGs, non-IgG immunoglobulins, proteins and non-protein agents, that have increased in vivo half-lives due to the presence of an IgG constant domain, or a portion thereof that binds the FcRn, having one or more amino acid modifications that increase the affinity of the constant domain or fragment for FcRn. Such proteins and molecules with increased half-lives have the advantage that smaller amounts and or less frequent dosing is required in the therapeutic, prophylactic or diagnostic use of such molecules.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: December 4, 2012
    Assignees: MedImmune, LLC, Board of Regents, The University of Texas System
    Inventors: William Dall'Acqua, Leslie S. Johnson, Elizabeth Sally Ward
  • Publication number: 20120294796
    Abstract: The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 22, 2012
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Paul A. Moore, Deryk T. Loo, Francine Z. Chen
  • Publication number: 20120269811
    Abstract: The present invention relates to humanized Fc?RIIB antibodies, fragments, and variants thereof that bind human Fc?RIIB with a greater affinity than said antibody binds Fc?RIIA. The invention encompasses the use of the humanized antibodies of the invention for the treatment of any disease related to loss of balance of Fc receptor mediated signaling, such as cancer, autoimmune and inflammatory disease. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the humanized antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing the efficacy of a vaccine composition by administering the humanized antibodies of the invention. The invention encompasses methods for treating an autoimmune disease and methods for elimination of cancer cells that express Fc?RIIB.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 25, 2012
    Applicant: MACROGENICS, INC.
    Inventors: LESLIE S. JOHNSON, LING HUANG
  • Publication number: 20120219551
    Abstract: The present invention relates to Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and to methods of using such polypeptides for treating or preventing cancer and other diseases. The Fc region-containing polypeptides of the present invention are preferably immunoglobulins (e.g., antibodies), in which the Fc region comprises at least one amino acid substitution relative to the corresponding amino acid sequence of a wild type Fc region, and which is sufficient to attenuate post-translational fucosylation and mediate improved binding to an activating Fc receptor and reduced binding to an inhibitory Fc receptor. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 30, 2012
    Applicant: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Godfrey Jonah Anderson Rainey, Sergey Gorlatov, Laura Lerner