Patents by Inventor Lester F. Ludwig

Lester F. Ludwig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9636655
    Abstract: Systems and methods for software-reconfigurable chemical process systems useful in a wide range of applications. Embodiments may include software control of internal processes, automated provisions for cleaning internal elements with solvents, provisions for clearing and drying gasses, and multitasking operation. In one family of embodiments, a flexible software-reconfigurable multipurpose reusable “Lab-on-a-Chip” or “embedded chemical processor” is realized that can facilitate a wide range of applications, instruments, and appliances. Through use of a general architecture, a single design can be economically manufactured in large scale and readily adapted to diverse specialized applications. Clearing and cleaning provisions may be used to facilitate reuse of the device, or may be used for decontamination prior to recycling or non-reclaimed disposal.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 2, 2017
    Inventor: Lester F. Ludwig
  • Patent number: 9632344
    Abstract: A system and method for implementing a display which also serves as one or more of a tactile user interface touchscreen, proximate hand gesture sensor, light field sensor, lensless imaging camera, document scanner, fingerprint scanner, and secure optical communications interface. In an implementation, an OLED array can be used for light sensing as well as light emission functions. In one implementation a single OLED array is used as the only optoelectronic user interface element in the system. In another implementation two OLED arrays are used, each performing and/or optimized from different functions. In another implementation, an LCD and an OLED array are used in various configurations. The resulting arrangements allow for sharing of both optoelectric devices as well as associated electronics and computational processors, and are accordingly advantageous for use in handheld devices such as cellphone, smartphones, PDAs, tablet computers, and other such devices.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 25, 2017
    Inventor: Lester F. Ludwig
  • Patent number: 9626023
    Abstract: A system for implementing a display which also serves as one or more of a tactile user interface touchscreen, light field sensor, proximate hand gesture sensor, and lensless imaging camera. In an implementation, an OLED array can be used for light sensing as well as light emission functions. In one implementation a single OLED array is used as the only optoelectronic user interface element in the system. In another implementation two OLED arrays are used, each performing and/or optimized from different functions. In another implementation, an LCD and an OLED array are used in various configurations. The resulting arrangements allow for sharing of both optoelectric devices as well as associated electronics and computational processors, and are accordingly advantageous for use in handheld devices such as cellphone, smartphones, PDAs, tablet computers, and other such devices.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 18, 2017
    Inventor: Lester F. Ludwig
  • Publication number: 20170097298
    Abstract: An electronic imaging flow-microscope for remote environmental sensing, bioreactor process monitoring, and optical microscopic tomography applications is described. A fluid conduit has a port on each end of a thin flat transparent fluid transport region. A planar illumination surface contacts one flat side of the transparent fluid transport region and a planar image sensing surface contacts the other flat side. Light from the illumination surface travels through the transparent fluid transport region to the planar image sensing surface, producing a light field affected by the fluid and objects present. The planar image sensing surface creates electrical image signals responsive to the light field. The planar illumination surface can be light emitting elements such as LEDs, OLEDs, or OLET whose illumination can be sequenced in an image formation process. The flow microscope can further comprise flow-restricting valves, pumps, energy harvesting arrangements, and power management.
    Type: Application
    Filed: October 10, 2016
    Publication date: April 6, 2017
    Inventors: Lester F. Ludwig, Karen Hao, Frank Hu, Alice Huang, Pooncharas Tipgunlakant
  • Patent number: 9613617
    Abstract: An “auditory eigenfunction” approach is provided for auditory language design, implementation, and rendering optimized for human auditory perception. The auditory eigenfunctions employed approximate solutions to an eigenfunction equation representing a model of human hearing, wherein the model comprises a frequency domain bandpass operation with a approximating the frequency range of human hearing and a time-limiting operation in the time domain approximating the time duration correlation window of human hearing. The method can be used to implement entirely new auditory languages, or modification to existing auditory languages, which are in various ways performance optimized for human auditory perception, either with or without the constraints of human vocal-tract rendering. The method can also be used, for example, to implement traditional speech synthesis, and can be useful in speech synthesis involving rapid phoneme production.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: April 4, 2017
    Inventor: Lester F. Ludwig
  • Patent number: 9605881
    Abstract: A system for adaptive cooling and energy harvesting comprising at least one thermoelectric device capable of acting as a thermoelectric cooler and as a thermoelectric generator, a hierarchical multiple-level control system, and electronics controlled by the control system and connected to the thermoelectric device. The electronics selectively configure the thermoelectric device in at least in a thermoelectric cooler operating mode and in a thermoelectric generation operating mode. The thermoelectric device can incorporate quantum-process and quantum-well materials for higher heat transfer and thermoelectric generation efficiencies. The invention provides for thermoelectric devices to additionally operate in temperature sensing mode. The hierarchical control system can comprise a plurality of control system, each of which can operate in isolation and can be interconnected with additional subsystems associated with other hierarchical levels.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: March 28, 2017
    Inventor: Lester F. Ludwig
  • Patent number: 9594019
    Abstract: An optical tomography system including a light emitting array having one or more light emitting diodes (LEDs), a sample holding module and a light sensing array comprising one or more light emitting diodes (LEDs), wherein the light sensing array is configured to sense light emitted from the light emitting array, which has passed through the sample holding module.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 14, 2017
    Inventor: Lester F. Ludwig
  • Patent number: 9594239
    Abstract: An electronic imaging flow-microscope for remote environmental sensing, bioreactor process monitoring, and optical microscopic tomography applications is described. A fluid conduit has a port on each end of a thin flat transparent fluid transport region. A planar illumination surface contacts one flat side of the transparent fluid transport region and a planar image sensing surface contacts the other flat side. Light from the illumination surface travels through the transparent fluid transport region to the planar image sensing surface, producing a light field affected by the fluid and objects present. The planar image sensing surface creates electrical image signals responsive to the light field. The planar illumination surface can be light emitting elements such as LEDs, OLEDs, or OLET. whose illumination can be sequenced in an image formation process. The flow microscope can further comprise flow-restricting valves, pumps, energy harvesting arrangements, and power management.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 14, 2017
    Inventor: Lester F. Ludwig
  • Publication number: 20170047497
    Abstract: Arrangements for incremental deployment of stand-alone and hierarchical adaptive cooling and energy harvesting arrangements for use in information technology and other heat-producing equipment are disclosed. The arrangements provide for individual cooling and energy harvesting subsystems, each of which can operate in isolation and be interconnected with additional subsystems in peer and hierarchical relationships. Each subsystem comprises at least one thermoelectric device capable of acting as a thermoelectric cooler and as a thermoelectric generator, a control system, and electronics controlled to selectively configure the thermoelectric device in at least in a thermoelectric cooler operating mode and in a thermoelectric generation operating mode. The thermoelectric device can incorporate quantum-process and quantum-well materials for higher heat transfer and thermoelectric generation efficiencies.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 16, 2017
    Inventor: Lester F. Ludwig
  • Publication number: 20160375440
    Abstract: A microfluidic transport system for transporting microdroplets in three spatial dimensions among layers of a layered microfluidic system. In an example arrangement, a first microfluidic layer for transporting microdroplets in two spatial dimensions responsive to electric fields created by electrical operation of electrodes is fluidically connected by one or more conduits to other microfluidic layers. Microdroplets can be transported through the one or more conduits so as to be moved among a plurality of layered microfluidic arrangements. The resulting layered system can be used for heat transfer, fluidic transfer, and other uses, and can be implemented using materials such as metal, glass, polymer, plastic, layered materials, fibrous materials, etc. In some applications the layered system can be implemented within a printed circuit board, integrated circuit housing.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventor: Lester F. Ludwig
  • Publication number: 20160378198
    Abstract: A system for a spatial-gesture user interface employing grammatical rules at various levels. Various distinct subset of the gestemes can be concatenated in space and time to construct a distinct gestures. Real-time spatial-gesture information measured by a spatial-gesture user interface is processed to at least a recognized sequence of specific gestemes and that the sequence of gestemes that the user's execution a gesture has been completed. The specific gesture rendered by the user is recognized according to the sequence of gestemes. Many additional features are then provided from this foundation, including gesture grammars, structured-meaning gesture-lexicon, imposed interpretations, context, and the use of gesture-rendering prosody. The invention can be used to provide very general spatial-gesture grammar user interface for touchscreens, high dimensional touch pad (hdtp), free-space camera, and other user interfaces.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventor: Lester F. Ludwig
  • Patent number: 9441308
    Abstract: A microfluidic transport system for transporting microdroplets in three spatial dimensions. In an example arrangement, a first planar arrangement for transporting microdroplets in two spatial dimensions responsive to electric fields created by electrical operation of electrodes is fluidically connected by one or more conduits to other planar arrangement for transporting microdroplets in two spatial dimensions responsive to electric fields created by electrical operation of electrodes. Microdroplets can be transported through the one or more conduits so as to be moved among the first and second planar arrangements. The system can be used for heat transfer, fluidic transfer, and other uses, and can be implemented within a printed circuit board, integrated circuit housing, or using materials such as metal, glass, polymer, plastic, layered materials, fibrous materials, etc.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 13, 2016
    Inventor: Lester F. Ludwig
  • Patent number: 9442652
    Abstract: A method for a multi-touch gesture-based user interface wherein a plurality of gestemes are defined as functions of abstract space and time and further being primitive gesture segments that can be concatenated over time and space to construct gestures. Various distinct subset of the gestemes can be concatenated in space and time to construct a distinct gestures. Real-time multi-touch gesture-based information provided by user interface is processed to at least a recognized sequence of specific gestemes and that the sequence of gestemes that the user's execution a gesture has been completed. The specific gesture rendered by the user is recognized according to the sequence of gestemes. Many additional features are then provided from this foundation, including gesture grammars, structured-meaning gesture-lexicon, context, and the use of gesture prosody.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 13, 2016
    Inventor: Lester F. Ludwig
  • Patent number: 9423161
    Abstract: Arrangements for the use of energy harvested by adaptive cooling and energy harvesting arrangements for use in information technology and other heat-producing equipment are disclosed. The arrangements provide for cooling and energy harvesting subsystems, each of which can operate in isolation and can be interconnected with additional subsystems in peer and hierarchical relationships. Each subsystem comprises at least one thermoelectric device capable of acting as a thermoelectric cooler and as a thermoelectric generator, a control system, and electronics controlled to selectively configure the thermoelectric device in at least in a thermoelectric cooler operating mode and in a thermoelectric generation operating mode. The thermoelectric device can incorporate quantum-process and quantum-well materials for higher heat transfer and thermoelectric generation efficiencies.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: August 23, 2016
    Inventor: Lester F. Ludwig
  • Patent number: 9417716
    Abstract: The functionality of a conventional mouse is extended to provide an extended number of simultaneously adjustable user interface parameters employing one or more user-removable modules. In an embodiment, a user interface for controlling an external device, such as a computer, includes a first user interface sensor configured with a housing. This first sensor generates a first plurality of signals responsive to movement of the housing relative to two orthogonal axes. A compartment is configured with the housing and is sized to receive the user-removable module. This user-removable module contains a second user interface sensor, which generates a second plurality of signals responsive to user manipulation. Output is provided responsive to signals generated by the first and second user interface sensors. In another embodiment, the housing of an extended functionality mouse itself serves as a module removable from a compartment provided in another physical device.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 16, 2016
    Assignee: Chemtron Research LLC
    Inventor: Lester F. Ludwig
  • Publication number: 20160224236
    Abstract: A touch-based user interface system comprising an arrangement for scanning a tactile sensor array to produce a corresponding array of measurement values that are presented to a processor for computation. The computation produces a plurality of running sums created from selected measurement values or functions of selected measurement values. A post-scan computation algorithm derives at least three independently-adjustable interactive control parameters responsive to at least displacements or angles the contact of a single area of threshold contact or threshold proximity. The system provides output control signals responsive to the independently-adjustable interactive control parameters. In one aspect of the invention, n algorithmic element for handling of regions of threshold contact or threshold proximity having non-convex shapes. In another aspect of the invention, an algorithmic element calculates the rate of change of one or more of the independently-adjustable interactive control parameters.
    Type: Application
    Filed: April 7, 2016
    Publication date: August 4, 2016
    Applicant: Advanced Touchscreen and Gestures Technologies, LLC
    Inventor: Lester F. Ludwig
  • Publication number: 20160216834
    Abstract: A touch-based user interface system comprising an arrangement for scanning a tactile sensor array to produce a corresponding array of measurement values that are presented to a processor for computation. The computation produces a plurality of running sums created from selected measurement values or functions of selected measurement values. A post-scan computation algorithm derives at least three independently-adjustable interactive control parameters responsive to at least displacements or angles the contact of a single area of threshold contact or threshold proximity. The system provides output control signals responsive to the independently-adjustable interactive control parameters. In one aspect of the invention, n algorithmic element for handling of regions of threshold contact or threshold proximity having non-convex shapes. In another aspect of the invention, an algorithmic element calculates the rate of change of one or more of the independently-adjustable interactive control parameters.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Applicant: Advanced Touchscreen and Gestures Technologies, LLC
    Inventor: Lester F. Ludwig
  • Patent number: 9389713
    Abstract: Methods for piecewise-linear and piecewise-affine transformations parameter decoupling in High Dimensional Touchpad (HDTP) user touch interfaces including those with multitouch capabilities are described. A calculation chain provides a first-order calculation of a subset of a collection of touch parameters (including for example left-right, front-back, downward pressure, roll angle, pitch angle, yaw angle) responsive in real-time to user touch on a touch-responsive sensor array. A piecewise-affine transformation is applied to these first-order calculations to produce parameter decoupling. The piecewise-affine transformation can be structured to depend only on current numerical values from the first-order calculation. Alternatively, the piecewise-affine transformation can be structured to additionally depend on the positive or negative direction of change over time of at least one numerical value from the first-order calculation, thereby providing a correction for hysteresis effects.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: July 12, 2016
    Inventor: Lester F. Ludwig
  • Patent number: 9304677
    Abstract: A touch-based user interface system comprising an arrangement for scanning a tactile sensor array to produce a corresponding array of measurement values that are presented to a processor for computation. The computation produces a plurality of running sums created from selected measurement values or functions of selected measurement values. A post-scan computation algorithm derives at least three independently-adjustable interactive control parameters responsive to at least displacements or angles the contact of a single area of threshold contact or threshold proximity. The system provides output control signals responsive to the independently-adjustable interactive control parameters. In one aspect of the invention, n algorithmic element for handling of regions of threshold contact or threshold proximity having non-convex shapes. In another aspect of the invention, an algorithmic element calculates the rate of change of one or more of the independently-adjustable interactive control parameters.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 5, 2016
    Assignee: Advanced Touchscreen and Gestures Technologies, LLC
    Inventor: Lester F. Ludwig
  • Patent number: 9203889
    Abstract: A bandwidth management system for multiple-service mobile networks for use with a plurality of instances of mobile communications devices. A plurality of communications silo each provide at least one communications service using a mobile network wherein at least one communications service from at least one communications silo involving the transport of real-time two-way video or other high bandwidth communications. Call/session state information from the communications silos and packet-level network transport measurement information responsive to packet-level network transport processes in the mobile network are used by a control system to create control messages transmitted to the communications silos for controlling call/session admission application QoS parameters responsive to traffic and network operation.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: December 1, 2015
    Assignee: Avistar Communications Corporation
    Inventors: Anton F. Rodde, Lester F. Ludwig