Patents by Inventor Leszek R. Motowidlo

Leszek R. Motowidlo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6699821
    Abstract: A Nb3Al superconducting wire and method for fabricating the same wherein Nb and Al powders in combination, or Nb—Al alloy powders are encapsulated in a metal tube, preferably copper or copper-alloy (e.g., CuNi), and the resultant composite is processed by conventional means to fine wire. Multifilamentary composites are produced by rebundling of the powder-filled wires into metal tubes followed by conventional processing to wire of a desired size. It is required for the use of Nb and Al powders in combination that the Nb and Al powder particle size be less than 100 nm. In the use of Nb—Al alloy powders, it is preferred, but not required, that the powder particle size be similarly of a nanometer scale. The use of nanometer-scale powders is beneficial to wire fabrication, allowing the production of long wire piece-lengths. At final wire size, the wires produced by practice of the present invention are heat treated at temperatures below the melting point of copper (1083° C.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: March 2, 2004
    Assignee: Composite Materials Technology, Inc.
    Inventors: Mark K. Rudziak, Leszek R. Motowidlo, Terence Wong
  • Publication number: 20020179184
    Abstract: A Nb3Al superconducting wire and method for fabricating the same wherein Nb and Al powders in combination, or Nb—Al alloy powders are encapsulated in a metal tube, preferably copper or copper-alloy (e.g., CuNi), and the resultant composite is processed by conventional means to fine wire. Multifilamentary composites are produced by rebundling of the powder-filled wires into metal tubes followed by conventional processing to wire of a desired size. It is required for the use of Nb and Al powders in combination that the Nb and Al powder particle size be less than 100 nm. In the use of Nb—Al alloy powders, it is preferred, but not required, that the powder particle size be similarly of a nanometer scale. The use of nanometer-scale powders is beneficial to wire fabrication, allowing the production of long wire piece-lengths. At final wire size, the wires produced by practice of the present invention are heat treated at temperatures below the melting point of copper (1083° C.
    Type: Application
    Filed: April 9, 2002
    Publication date: December 5, 2002
    Inventors: Mark K. Rudziak, Leszek R. Motowidlo, Terence Wong
  • Patent number: 4803310
    Abstract: A multifilament superconductor having continuous, non-random pinning centers and including a plurality of parallel superconductive subfilaments of uniform cross-sectional area, the subfilaments being embedded in generally hexagonal pinning jackets, and the pinning jackets together forming a structure having a honeycomb-like cross-section, the jackets having a wall thickness that is substantially an integral multiple of the coherence length of the subfilaments in a predetermined field, the jackets together forming a plurality of continuous paths for fluxoids across the superconductor, whereby total pinning density of said superconductor is substantially increased, and the critical field strength of the superconductor is enhanced.
    Type: Grant
    Filed: May 4, 1987
    Date of Patent: February 7, 1989
    Assignee: Intermagnetics General Corporation
    Inventors: Bruce A. Zeitlin, Michael S. Walker, Leszek R. Motowidlo