Patents by Inventor Lev Sakin
Lev Sakin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7405802Abstract: An exposure system for manufacturing flat panel displays (FPDs) includes a reticle stage and a substrate stage. A magnification reflective optical system images the reticle onto the substrate. The system may be a 2× magnification system, or another magnification that is compatible with currently available mask sizes. By writing reticles with circuit pattern dimensions that are one-half the desired size for an FPD, a 2× optical system can be used to expose FPDs. The designs for the 1.5× and larger magnification optical systems all typically have at least three powered mirrors. A corrector, positioned either near the reticle or near the substrate, can be added to the three mirror design to improve the systems optical performance. The corrector may be a reflective, or a refractive design. The corrector can have an aspheric surface, and optionally a powered surface.Type: GrantFiled: August 19, 2004Date of Patent: July 29, 2008Assignee: ASML Holding N.V.Inventors: Robert D. Harned, Lev Sakin, Patrick de Jager, Cheng-Qun Gui, Irina Pozhinskaya, Noreen Harned
-
Patent number: 7242456Abstract: A lithography system has a magnification module having multiple magnifications at a same time within an object plane, which can include a pattern generator therein. The pattern generator is used to pattern light from an illumination system, which is directed by a projection optical system onto a substrate to form features on a substrate. Having multiple magnifications in the object plate allows for patterning of both large and small features on an image plane, which can include the substrate therein. In one example, an array of pattern generators are used. In this example, substantially an entire surface of the substrate can be patterned with large and small features at substantially a same time.Type: GrantFiled: May 26, 2004Date of Patent: July 10, 2007Assignee: ASML Holdings N.V.Inventors: Lev Ryzhikov, Yuli Vladimirsky, Lev Sakin
-
Patent number: 7023525Abstract: An imaging apparatus according to one embodiment of the invention includes a programmable patterning structure configured to pattern a projection beam of radiation according to a desired pattern. The programmable patterning structure includes a plurality of separate patterning sub-elements, each sub-element being configured to generate a patterned sub-beam. At least one of the separate patterning sub-elements is configured to generate a patterned sub-beam whose cross-section contains regions of different intensities. The imaging apparatus also includes a combining structure configured to combine the plurality of patterned sub-beams into a single patterned image, and a projection system configured to project the patterned image onto a target portion of a substrate.Type: GrantFiled: July 6, 2004Date of Patent: April 4, 2006Assignee: ASML Netherlands B.V.Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Jason Douglas Hintersteiner, Borgert Kruizinga, Matthew Eugene McCarthy, Mark Oskotsky, Lev Ryzhikov, Lev Sakin, Stanislav Smirnov, Bart Snijders, Karel Diederick Van Der Mast, Huibert Visser
-
Publication number: 20050264782Abstract: A lithography system has a magnification module having multiple magnifications at a same time within an object plane, which can include a pattern generator therein. The pattern generator is used to pattern light from an illumination system, which is directed by a projection optical system onto a substrate to form features on a substrate. Having multiple magnifications in the object plate allows for patterning of both large and small features on an image plane, which can include the substrate therein. In one example, an array of pattern generators are used. In this example, substantially an entire surface of the substrate can be patterned with large and small features at substantially a same time.Type: ApplicationFiled: May 26, 2004Publication date: December 1, 2005Inventors: Lev Ryzhikov, Yuli Vladimirsky, Lev Sakin
-
Publication number: 20050237505Abstract: An exposure system for manufacturing flat panel displays (FPDs) includes a reticle stage and a substrate stage. A magnification ringfield reflective optical system images the reticle onto the substrate. The system may be a 2× magnification system, or another magnification that is compatible with currently available mask sizes. By writing reticles with circuit pattern dimensions that are one-half the desired size for an FPD, a 2× optical system can be used to expose FPDs. The designs for the 1.5× and larger magnification optical systems all typically have at least three powered mirrors. A corrector, positioned either near the reticle or near the substrate, can be added to the three mirror design to improve the systems optical performance. The corrector may be a reflective, or a refractive design. The corrector can have an aspheric surface, and optionally a powered surface. The corrector may be a flat glass plate, or a lens having concave-convex, concave-concave or convex-convex surfaces.Type: ApplicationFiled: August 19, 2004Publication date: October 27, 2005Applicant: ASML Holding N.V.Inventors: Robert Harned, Lev Sakin, Patrick de Jager, Cheng-Qun Gui, Irina Pozhinskaya, Noreen Harned
-
Publication number: 20040239909Abstract: An imaging apparatus according to one embodiment of the invention includes a programmable patterning structure configured to pattern a projection beam of radiation according to a desired pattern. The programmable patterning structure includes a plurality of separate patterning sub-elements, each sub-element being configured to generate a patterned sub-beam. At least one of the separate patterning sub-elements is configured to generate a patterned sub-beam whose cross-section contains regions of different intensities. The imaging apparatus also includes a combining structure configured to combine the plurality of patterned sub-beams into a single patterned image, and a projection system configured to project the patterned image onto a target portion of a substrate.Type: ApplicationFiled: July 6, 2004Publication date: December 2, 2004Applicant: ASML Netherlands B.V.Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Jason Douglas Hintersteiner, Borgert Kruizinga, Matthew Eugene McCarthy, Mark Oskotsky, Lev Ryzhikov, Lev Sakin, Stanislav Smirnov, Bart Snijders, Karel Diederick Van Der Mast, Huibert Visser
-
Patent number: 6778257Abstract: An imaging apparatus according to one embodiment of the invention includes a programmable patterning structure configured to pattern a projection beam of radiation according to a desired pattern. The programmable patterning structure includes a plurality of separate patterning sub-elements, each sub-element being configured to generate a patterned sub-beam. At least one of the separate patterning sub-elements is configured to generate a patterned sub-beam whose cross-section contains regions of different intensities. The imaging apparatus also includes a combining structure configured to combine the plurality of patterned sub-beams into a single patterned image, and a projection system configured to project the patterned image onto a target portion of a substrate.Type: GrantFiled: July 23, 2002Date of Patent: August 17, 2004Assignee: ASML Netherlands B.V.Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Jason Douglas Hintersteiner, Borgert Kruizinga, Matthew Eugene McCarthy, Mark Oskotsky, Lev Ryzhikov, Lev Sakin, Stanislav Smirnov, Bart Snijders, Karel Diederick Van Der Mast, Huibert Visser
-
Patent number: 6741362Abstract: The present invention provides a method and system for determining three-dimensional refractive gradient index distribution. The method and system of the present invention determine inhomogeneity data and calculate index of refraction changes in three-dimensions (3D). The method and system provide 3D modeling of an optical object or system that determines the three-dimensional distribution of the refractive index in the object. In one embodiment, the optical object is a blank. In different embodiments, the optical system is more than one blank. In alternative embodiments, the optical system can be a projection optics system that can include optical components such as lenses, filters, plates, and prisms. The present invention also provides a method for selecting a plurality of preferred optical elements to assemble a composite optical system with predetermined parameters.Type: GrantFiled: May 6, 2002Date of Patent: May 25, 2004Assignee: ASML Holding N.V.Inventors: Stanislav Smirnov, Mark L. Oskotsky, Lev Sakin, John D. Martin
-
Publication number: 20030030781Abstract: An imaging apparatus according to one embodiment of the invention includes a programmable patterning structure configured to pattern a projection beam of radiation according to a desired pattern. The programmable patterning structure includes a plurality of separate patterning sub-elements, each sub-element being configured to generate a patterned sub-beam. At least one of the separate patterning sub-elements is configured to generate a patterned sub-beam whose cross-section contains regions of different intensities. The imaging apparatus also includes a combining structure configured to combine the plurality of patterned sub-beams into a single patterned image, and a projection system configured to project the patterned image onto a target portion of a substrate.Type: ApplicationFiled: July 23, 2002Publication date: February 13, 2003Applicant: ASML NETHERLANDS B.V.Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Jason Douglas Hintersteiner, Borgert Kruizinga, Matthew Eugene McCarthy, Mark Oskotsky, Lev Ryzhikov, Lev Sakin, Stanislav Smirnov, Bart Snijders, Karel Diederick Van Der Mast, Huibert Visser
-
Publication number: 20020191193Abstract: The present invention provides a method and system for determining three-dimensional refractive gradient index distribution. The method and system of the present invention determine inhomogeneity data and calculate index of refraction changes in three-dimensions (3D). The method and system provide 3D modeling of an optical object or system that determines the three-dimensional distribution of the refractive index in the object. In one embodiment, the optical object is a blank. In different embodiments, the optical system is more than one blank. In alternative embodiments, the optical system can be a projection optics system that can include optical components such as lenses, filters, plates, and prisms. The present invention also provides a method for selecting a plurality of preferred optical elements to assemble a composite optical system with predetermined parameters.Type: ApplicationFiled: May 6, 2002Publication date: December 19, 2002Applicant: ASML US, Inc.Inventors: Stanislav Smirnov, Mark L. Oskotsky, Lev Sakin, John D Martin
-
Patent number: 5237969Abstract: An ignition system (20) for an internal combustion engine (10) includes a spark plug assembly (21) having an optical passage (45) therethrough that allows an ultraviolet light beam (62) from a source (24) to enter the combustion chamber (8) and be directed to a gap (60) between two electrodes (36) and (38) that have a voltage differential applied therebetween to commence ignition in the combustion chamber.Type: GrantFiled: April 10, 1992Date of Patent: August 24, 1993Inventor: Lev Sakin