Patents by Inventor Lewis Bartel

Lewis Bartel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160222283
    Abstract: Electrically conductive proppant particles having non-uniform electrically conductive coatings are disclosed. The non-uniform electrically conductive coatings can have a thickness of at least about 10 nm formed on an outer surface of a sintered, substantially round and spherical particle, wherein less than 95% of the outer surface of the sintered, substantially round and spherical particle is coated with the electrically conductive material. Methods for making and using such electrically conductive proppant particles having non-uniform electrically conductive coatings are also disclosed.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 4, 2016
    Inventors: Chad Cannan, Lewis Bartel, Todd Roper
  • Publication number: 20160160119
    Abstract: Smart fluids for use in hydraulic fracturing are disclosed herein. The smart fluids can include a first particulate component containing a magnetic material and a second particulate component having a permeability and a conductivity. The first particulate component and the second particulate component can be mixed with a fluid selected from the group of water, mineral oil, and glycol and any mixture thereof. The first particulate component can include one or more nanoparticles, including one or more nanowires, formed from the magnetic material. The second particulate component can have a size from about 4 mesh to about 120 mesh.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 9, 2016
    Inventors: Chad Cannan, Lewis Bartel
  • Publication number: 20160069174
    Abstract: Methods and systems for determining subterranean fracture closure are disclosed herein. The methods can include electrically energizing a casing of a wellbore that extends from a surface of the earth into a subterranean formation having a fracture that is at least partially filled with an electrically conductive proppant and measuring a first electric field response at the surface or in an adjacent wellbore at a first time interval to provide a first field measurement. The methods can also include measuring a second electric field response at the surface or in the adjacent wellbore at a second time interval to provide a second field measurement and determining an increase in closure pressure on the electrically conductive proppant from a difference between the first and second field measurements.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Chad Cannan, Lewis Bartel, Terry Palisch, David Aldridge, Todd Roper, Steve Savoy, Daniel R. Mitchell
  • Publication number: 20160047933
    Abstract: Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 18, 2016
    Inventor: Lewis Bartel
  • Publication number: 20160047222
    Abstract: Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
    Type: Application
    Filed: January 8, 2015
    Publication date: February 18, 2016
    Inventor: Lewis Bartel
  • Publication number: 20150184065
    Abstract: Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 2, 2015
    Inventors: Chad Cannan, Lewis Bartel, Terrence Palisch, David Aldridge
  • Patent number: 8931553
    Abstract: Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: January 13, 2015
    Assignees: CARBO Ceramics Inc., Sandia Coporation
    Inventors: Chad Cannan, Lewis Bartel, Terrence Palisch, David Aldridge
  • Publication number: 20140190686
    Abstract: Electrically conductive sintered, substantially round and spherical particles and methods for producing such electrically conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Inventors: Chad Cannan, Lewis Bartel, Terry Palisch, David Aldridge