Patents by Inventor Lewis J. Rothberg

Lewis J. Rothberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8957002
    Abstract: A sensor chip and detection device are disclosed. The sensor chip includes a substrate, at least a portion of which is covered by a metal nanoparticle film; a first nucleic acid molecule that is characterized by being able to (i) self-anneal into a hairpin conformation and (ii) hybridize specifically to a target nucleic acid molecule, the first nucleic acid molecule having first and second ends, which first end is tethered to the metal nanoparticle film; and a first fluorophore bound to the second end of the first nucleic molecule. When the first nucleic acid molecule is in the hairpin conformation, the metal nanoparticle film substantially quenches fluorescent emissions by the first fluorophore, and when the first nucleic acid molecule is in a non-hairpin conformation fluorescent emissions by the first fluorophore are surface plasmon-enhanced.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 17, 2015
    Assignee: University of Rochester
    Inventors: Benjamin L. Miller, Todd D. Krauss, Lewis J. Rothberg, Hsin-I Peng
  • Patent number: 8502982
    Abstract: A flow cell for use in an arrayed imaging reflectometry detection system is described herein. The flow cell includes: first and second members that are secured together to define a substantially fluid-tight chamber having an inlet and an outlet, at least the second member being light transmissive; and a chip having a substrate, one or more coating layers on the substrate, and one or more probe molecules tethered to the outermost coating layer, the chip being positioned with the outermost coating layer and the one or more probe molecules thereon exposed to fluid in the chamber and facing the second member, whereby light passing through the second member is reflected by the chip.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: August 6, 2013
    Assignee: University of Rochester
    Inventors: Charles R. Mace, Benjamin L. Miller, Lewis J. Rothberg
  • Patent number: 7551294
    Abstract: A system and method for biomolecular sensing are disclosed. The system includes a receptor for a target, a source of p-polarized light positioned to direct light toward the receptor in a manner effective to result in a condition of near perfect interference in the absence of target binding; and a detector positioned to measure any light reflected from the front and back surfaces of the coating. The receptor includes a substrate and a translucent coating on the substrate having front and back surfaces, wherein the incident angle for one of the substrate/coating interface and the medium/coating (probe) interface is greater than its Brewster angle and the incident angle for the other interface is less than its Brewster angle.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: June 23, 2009
    Assignee: University of Rochester
    Inventor: Lewis J. Rothberg
  • Publication number: 20090153867
    Abstract: A flow cell for use in an arrayed imaging reflectometry detection system is described herein. The flow cell includes: first and second members that are secured together to define a substantially fluid-tight chamber having an inlet and an outlet, at least the second member being light transmissive; and a chip having a substrate, one or more coating layers on the substrate, and one or more probe molecules tethered to the outermost coating layer, the chip being positioned with the outermost coating layer and the one or more probe molecules thereon exposed to fluid in the chamber and facing the second member, whereby light passing through the second member is reflected by the chip.
    Type: Application
    Filed: October 30, 2008
    Publication date: June 18, 2009
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Charles R. Mace, Benjamin L. Miller, Lewis J. Rothberg
  • Publication number: 20090137418
    Abstract: A sensor chip and detection device are disclosed. The sensor chip includes a substrate, at least a portion of which is covered by a metal nanoparticle film; a first nucleic acid molecule that is characterized by being able to (i) self-anneal into a hairpin conformation and (ii) hybridize specifically to a target nucleic acid molecule, the first nucleic acid molecule having first and second ends, which first end is tethered to the metal nanoparticle film; and a first fluorophore bound to the second end of the first nucleic molecule. When the first nucleic acid molecule is in the hairpin conformation, the metal nanoparticle film substantially quenches fluorescent emissions by the first fluorophore, and when the first nucleic acid molecule is in a non-hairpin conformation fluorescent emissions by the first fluorophore are surface plasmon-enhanced.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 28, 2009
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Benjamin L. Miller, Todd D. Krauss, Lewis J. Rothberg, Hsin-I Peng
  • Patent number: 5478658
    Abstract: Optical microcavities are potentially useful as light emitters for, e.g., flat panel displays. Such microcavities comprise a layer structure, including two spaced apart reflectors that define the cavity, with a layer of organic (electroluminescent) material disposed between the reflectors. We have discovered that a microcavity can simultaneously emit radiation of two or more predetermined colors such that the emission has a desired apparent color, exemplarily white. Emission of two or more colors requires that the effective optical length of the cavity is selected such that the cavity is a multimode cavity, with the wavelengths of two or more of the standing wave modes that are supported by the cavity lying within the emission region of the electroluminescence spectrum of the active material.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: December 26, 1995
    Assignee: AT&T Corp.
    Inventors: Ananth Dodabalapur, Timothy M. Miller, Lewis J. Rothberg
  • Patent number: 5405710
    Abstract: Apparatus according to the invention comprises at least two optical microcavity light emitters. Each one of the at least two light emitters comprises spaced apart reflectors that define a microcavity, and further comprises organic material that is capable of electro-luminescence (e.g., tris (8-hydroxyquinolinol) aluminum, commonly referred to as "Alq"), and means for applying an electric field across the organic material. One of the at least two microcavities has effective optical length L.sub.1, and the other microcavity has effective optical length L.sub.2 .noteq.L.sub.1, with the optical lengths selected such that one of the microcavities emits radiation of a first color (e.g., red), and the other microcavity emits radiation of a second color (e.g., green). In many cases there will be present also a third microcavity that emits radiation of a third color (e.g., blue).
    Type: Grant
    Filed: November 22, 1993
    Date of Patent: April 11, 1995
    Assignee: AT&T Corp.
    Inventors: Ananth Dodabalapur, Timothy M. Miller, Lewis J. Rothberg