Patents by Inventor Li-Cheng CHANG

Li-Cheng CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145389
    Abstract: A semiconductor chip includes a first intellectual property block. There are a second intellectual property block and a third intellectual property block around the first intellectual property block. There is a multiple metal layer stack over the first intellectual property block, the second intellectual property block, and the third intellectual property block. An interconnect structure is situated in the upper portion of the multiple metal layer stack. The interconnect structure is configured for connecting the first intellectual property block and the second intellectual property block. In addition, at least a part of the interconnect structure extends across and over the third intellectual property block.
    Type: Application
    Filed: July 28, 2023
    Publication date: May 2, 2024
    Inventors: Li-Chiu WENG, Yew Teck TIEO, Ming-Hsuan WANG, Chia-Cheng CHEN, Wei-Yi CHANG, Jen-Hang YANG, Chien-Hsiung HSU
  • Publication number: 20240144467
    Abstract: A hot spot defect detecting method and a hot spot defect detecting system are provided. In the method, hot spots are extracted from a design of a semiconductor product to define a hot spot map comprising hot spot groups, wherein local patterns in a same context of the design yielding a same image content are defined as a same hot spot group. During runtime, defect images obtained by an inspection tool performing hot scans on a wafer manufactured with the design are acquired and the hot spot map is aligned to each defect image to locate the hot spot groups. The hot spot defects in each defect image are detected by dynamically mapping the hot spot groups located in each defect image to a plurality of threshold regions and respectively performing automatic thresholding on pixel values of the hot spots of each hot spot group in the corresponding threshold region.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Huei Chen, Pei-Chao Su, Xiaomeng Chen, Chan-Ming Chang, Shih-Yung Chen, Hung-Yi Chung, Kuang-Shing Chen, Li-Jou Lee, Yung-Cheng Lin, Wei-Chen Wu, Shih-Chang Wang, Chien-An Lin
  • Publication number: 20240132904
    Abstract: The present invention relates to a method for producing recombinant human prethrombin-2 protein and having human ?-thrombin activity by the plant-based expression systems.
    Type: Application
    Filed: October 16, 2023
    Publication date: April 25, 2024
    Applicant: PROVIEW-MBD BIOTECH CO., LTD.
    Inventors: Yu-Chia CHANG, Jer-Cheng KUO, Ruey-Chih SU, Li-Kun HUANG, Ya-Yun LIAO, Ching-I LEE, Shao-Kang HUNG
  • Publication number: 20240096997
    Abstract: Embodiments of the present disclosure provide semiconductor device structures and methods of forming the same. The structure includes a first source/drain region disposed in a PFET region and a second source/drain region disposed in an NFET region. The second source/drain region comprises a dipole region. The structure further includes a first silicide layer disposed on and in contact with the first source/drain region, a second silicide layer disposed on and in contact with the first silicide layer, and a third silicide layer disposed on and in contact with the dipole region of the second source/drain region. The first, second, and third silicide layers include different materials. The structure further includes a first conductive feature disposed over the first source/drain region, a second conductive feature disposed over the second source/drain region, and an interconnect structure disposed on the first and second conductive features.
    Type: Application
    Filed: January 15, 2023
    Publication date: March 21, 2024
    Inventors: Po-Chin Chang, Lin-Yu Huang, Li-Zhen Yu, Yuting Cheng, Sung-Li Wang, Pinyen Lin
  • Patent number: 11923432
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Patent number: 11316039
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming a channel layer and an active layer over a substrate; forming a doped epitaxial layer over the active layer; patterning the doped epitaxial layer, the active layer, and the channel layer to form a fin structure comprising a doped epitaxial fin portion, an active fin portion below the doped epitaxial fin portion, and a channel fin portion below the active fin portion; removing the doped epitaxial fin portion; and forming a gate electrode at least partially extending along a sidewall of the fin structure to form a Schottky barrier between the gate electrode and the fin structure after removing the doped epitaxial fin portion.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsin Wu, Li-Cheng Chang, Cheng-Jia Dai, Shun-Cheng Yang
  • Publication number: 20200357908
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming a channel layer and an active layer over a substrate; forming a doped epitaxial layer over the active layer; patterning the doped epitaxial layer, the active layer, and the channel layer to form a fin structure comprising a doped epitaxial fin portion, an active fin portion below the doped epitaxial fin portion, and a channel fin portion below the active fin portion; removing the doped epitaxial fin portion; and forming a gate electrode at least partially extending along a sidewall of the fin structure to form a Schottky barrier between the gate electrode and the fin structure after removing the doped epitaxial fin portion.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Chao-Hsin WU, Li-Cheng CHANG, Cheng-Jia DAI, Shun-Cheng YANG
  • Patent number: 10727328
    Abstract: A semiconductor device includes a substrate, a channel layer, an active layer, and a gate electrode. The channel layer has a fin portion over the substrate. The active layer is over at least the fin portion of the channel layer. The active layer is configured to cause a two-dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer. The gate electrode is in contact with a sidewall of the fin portion of the channel layer.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 28, 2020
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Chao-Hsin Wu, Li-Cheng Chang, Cheng-Jia Dai, Shun-Cheng Yang
  • Publication number: 20190165153
    Abstract: A semiconductor device includes a substrate, a channel layer, an active layer, and a gate electrode. The channel layer has a fin portion over the substrate. The active layer is over at least the fin portion of the channel layer. The active layer is configured to cause a two-dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer. The gate electrode is in contact with a sidewall of the fin portion of the channel layer.
    Type: Application
    Filed: April 12, 2018
    Publication date: May 30, 2019
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Chao-Hsin WU, Li-Cheng CHANG, Cheng-Jia DAI, Shun-Cheng YANG
  • Patent number: 10115563
    Abstract: An electron-beam lithography method includes, computing and outputting a development time of a positive-tone electron-sensitive layer and a parameter recipe of an electron-beam device by using a pattern dimension simulation system, performing a low-temperature treatment to chill a developer solution, utilizing an electron-beam to irradiate an exposure region of the positive-tone electron-sensitive layer based on the parameter recipe, and utilizing the chilled developer solution to develop a development region of the positive-tone electron-sensitive layer based on the development time. The development region is present within the exposure region, and an area of the exposure region is smaller than that of the first portion. As a result, the electron-beam lithography method may control a dimension of a development pattern of the positive-tone electron-sensitive layer more accurately, and may also shrink a minimum dimension of the development pattern of the positive-tone electron-sensitive layer.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 30, 2018
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chieh-Hsiung Kuan, Chun Nien, Wen-Sheng Su, Li-Cheng Chang, Cheng-Huan Chung, Wei-Cheng Rao, Hsiu-Yun Yeh, Shao-Wen Chang, Kuan-Yuan Shen, Susumu Ono
  • Publication number: 20180149980
    Abstract: An electron-beam lithography method includes, computing and outputting a development time of a positive-tone electron-sensitive layer and a parameter recipe of an electron-beam device by using a pattern dimension simulation system, performing a low-temperature treatment to chill a developer solution, utilizing an electron-beam to irradiate an exposure region of the positive-tone electron-sensitive layer based on the parameter recipe, and utilizing the chilled developer solution to develop a development region of the positive-tone electron-sensitive layer based on the development time. The development region is present within the exposure region, and an area of the exposure region is smaller than that of the first portion. As a result, the electron-beam lithography method may control a dimension of a development pattern of the positive-tone electron-sensitive layer more accurately, and may also shrink a minimum dimension of the development pattern of the positive-tone electron-sensitive layer.
    Type: Application
    Filed: June 1, 2017
    Publication date: May 31, 2018
    Inventors: Chieh-Hsiung KUAN, Chun NIEN, Wen-Sheng SU, Li-Cheng CHANG, Cheng-Huan CHUNG, Wei-Cheng RAO, Hsiu-Yun YEH, Shao-Wen CHANG, Kuan-Yuan SHEN, Susumu ONO