Patents by Inventor Li-Min Hung

Li-Min Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11678133
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-Wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Publication number: 20220184614
    Abstract: A flow cell includes: a first substrate; a second substrate; a first resin layer disposed over an inner surface of the first substrate; a second resin layer disposed over an inner surface of the second substrate; a first plurality of biological capture sites located at the first resin layer; a second plurality of biological capture sites located at the second resin layer; and a polymer layer interposed between the first resin layer and the second resin layer, such that the first substrate is attached to the second substrate via at least the first resin layer, the polymer layer, and the second resin layer, wherein the polymer layer defines a plurality of microfluidic channels that extend through polymer layer.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 16, 2022
    Applicant: Illumina, Inc.
    Inventors: Shang-Ying TSAI, Li-Min Hung, Jung-Huei Peng, Shane Bowen, Hui Han, Danny Chan, Sang Park
  • Patent number: 11298697
    Abstract: A flow cell includes: a first substrate; a second substrate; a first resin layer disposed over an inner surface of the first substrate; a second resin layer disposed over an inner surface of the second substrate; a first plurality of biological capture sites located at the first resin layer; a second plurality of biological capture sites located at the second resin layer; and a polymer layer interposed between the first resin layer and the second resin layer, such that the first substrate is attached to the second substrate via at least the first resin layer, the polymer layer, and the second resin layer, wherein the polymer layer defines a plurality of microfluidic channels that extend through polymer layer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 12, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng, Shane Bowen, Hui Han, Danny Chan, Sang Park
  • Publication number: 20200413210
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-Wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 10779100
    Abstract: An embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 10486153
    Abstract: The present disclosure provides flow cells and methods of fabricating flow cells. The method includes combining three portions: a first substrate, a second substrate, and microfluidic channels between the first substrate and the second substrate having walls of a photoresist dry film. Through-holes for inlet and outlet are formed in the first substrate or the second substrate. Patterned capture sites are stamped on the first substrate and the second substrate by a nanoimprint lithography process. In other embodiments, parts of the patterned capture sites are selectively attached to a surface chemistry pattern formed of silicon oxide islands each disposed on an outcrop of a soft bottom layer.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: November 26, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng
  • Patent number: 10273148
    Abstract: Some embodiments of the present disclosure provide a microelectromechanical systems (MEMS). The MEMS includes a semiconductive block. The semiconductive block includes a protruding structure. The protruding structure includes a bottom surface. The semiconductive block includes a sensing structure. A semiconductive substrate includes a conductive region. The conductive region includes a first surface under the sensing structure. The first surface is substantially coplanar with the bottom surface. A dielectric region includes a second surface not disposed over the first surface.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Chia-Hua Chu, Nien-Tsung Tsai, Yao-Te Huang, Li-Min Hung, Yu-Chia Liu
  • Publication number: 20180288549
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 9998843
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: June 12, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Publication number: 20170326548
    Abstract: The present disclosure provides flow cells and methods of fabricating flow cells. The method includes combining three portions: a first substrate, a second substrate, and microfluidic channels between the first substrate and the second substrate having walls of a photoresist dry film. Through-holes for inlet and outlet are formed in the first substrate or the second substrate. Patterned capture sites are stamped on the first substrate and the second substrate by a nanoimprint lithography process. In other embodiments, parts of the patterned capture sites are selectively attached to a surface chemistry pattern formed of silicon oxide islands each disposed on an outcrop of a soft bottom layer.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 16, 2017
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng
  • Patent number: 9673169
    Abstract: A wafer seal ring may be formed on a wafer having a pattern structure with a pattern density. The wafer seal ring pattern structure may include a plurality of lines having a width and a spacing that may be approximately equal to a width and a spacing of die bond rings on the wafer. The wafer having the wafer seal ring formed thereon may be bonded to a wafer that may not have a wafer seal ring. A pair of wafers may be formed with respective wafer seal rings formed in a corresponding manner. The pair of wafers may be bonded together with the wafer seal rings aligned and bonded together to form a seal ring structure between the bonded wafers.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chuan Teng, Jung-Huei Peng, Shang-Ying Tsai, Hsin-Ting Huang, Li-Min Hung, Yao-Te Huang, Chin-Yi Cho
  • Patent number: 9656260
    Abstract: The present disclosure provides flow cells and methods of fabricating flow cells. The method includes combining three portions: a first substrate, a second substrate, and microfluidic channels between the first substrate and the second substrate having walls of a photoresist dry film. Through-holes for inlet and outlet are formed in the first substrate or the second substrate. Patterned capture sites are stamped on the first substrate and the second substrate by a nanoimprint lithography process. In other embodiments, parts of the patterned capture sites are selectively attached to a surface chemistry pattern formed of silicon oxide islands each disposed on an outcrop of a soft bottom layer.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng
  • Patent number: 9643838
    Abstract: A semiconductor device includes a substrate, an interconnection layer, an outgassing layer, and a patterned outgassing barrier layer. The interconnection layer is over the substrate. The outgassing layer is over the interconnection layer. The patterned outgassing barrier layer is over the outgassing layer. The patterned outgassing barrier layer includes a plurality of barrier structures and a plurality of openings. The plurality of openings expose a portion of an upmost surface of the outgassing layer, and a bottommost surface of the patterned outgassing barrier layer is substantially coplanar with the upmost surface of the outgassing layer.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: May 9, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD
    Inventors: Chia-Hua Chu, Jung-Huei Peng, Yi-Chien Wu, Li-Min Hung
  • Publication number: 20170044004
    Abstract: Some embodiments of the present disclosure provide a microelectromechanical systems (MEMS). The MEMS includes a semiconductive block. The semiconductive block includes a protruding structure. The protruding structure includes a bottom surface. The semiconductive block includes a sensing structure. A semiconductive substrate includes a conductive region. The conductive region includes a first surface under the sensing structure. The first surface is substantially coplanar with the bottom surface. A dielectric region includes a second surface not disposed over the first surface.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 16, 2017
    Inventors: CHUN-WEN CHENG, JUNG-HUEI PENG, CHIA-HUA CHU, NIEN-TSUNG TSAI, YAO-TE HUANG, LI-MIN HUNG, YU-CHIA LIU
  • Patent number: 9545691
    Abstract: According to an exemplary embodiment of the disclosure, a method of removing a waste part of a substrate is provided. The method includes: using a laser to partially drill the substrate to define the waste part; and applying megasonic vibration to the substrate to remove the waste part from the substrate.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: January 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chin-Yi Cho, Yi-Chuan Teng, Shang-Ying Tsai, Li-Min Hung, Yao-Te Huang, Jung-Huei Peng
  • Publication number: 20160271607
    Abstract: The present disclosure provides flow cells and methods of fabricating flow cells. The method includes combining three portions: a first substrate, a second substrate, and microfluidic channels between the first substrate and the second substrate having walls of a photoresist dry film. Through-holes for inlet and outlet are formed in the first substrate or the second substrate. Patterned capture sites are stamped on the first substrate and the second substrate by a nanoimprint lithography process. In other embodiments, parts of the patterned capture sites are selectively attached to a surface chemistry pattern formed of silicon oxide islands each disposed on an outcrop of a soft bottom layer.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng
  • Publication number: 20160157038
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 9352315
    Abstract: The present disclosure provides flow cells and methods of fabricating flow cells. The method includes combining three portions: a first substrate, a second substrate, and microfluidic channels between the first substrate and the second substrate having walls of a photoresist dry film. Through-holes for inlet and outlet are formed in the first substrate or the second substrate. Patterned capture sites are stamped on the first substrate and the second substrate by a nanoimprint lithography process. In other embodiments, parts of the patterned capture sites are selectively attached to a surface chemistry pattern formed of silicon oxide islands each disposed on an outcrop of a soft bottom layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Ying Tsai, Li-Min Hung, Jung-Huei Peng
  • Patent number: 9269679
    Abstract: In a wafer level chip scale packaging technique for MEMS devices, a deep trench is etched on a scribe line area between two CMOS devices of a CMOS substrate at first. After bonding of the CMOS substrate with a MEMS substrate, the deep trench is opened by thin-down process so that CMOS substrate is singulated while MEMS substrate is not (partial singulation). Electrical test pad on MEMS substrate is exposed and protection material can be filled through the deep trench around bonding layers. After filling the protection material, the wafer is diced to form packaged individual chips with protection from environment outside bonding layer.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: February 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chuan Teng, Jung-Huei Peng, Shang-Ying Tsai, Li-Min Hung, Yao-Te Huang, Chin-Yi Cho
  • Patent number: 9264833
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate; a silicon oxide layer formed on one side of the first silicon substrate; a second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates; and a diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates, wherein the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Yao-Te Huang, Chin-Yi Cho, Li-Min Hung, Chun-Wen Cheng