Patents by Inventor Li Qin Zhou

Li Qin Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230327139
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precurors in a stream of CO and H2 gas mixture.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Akron
    Inventors: Li Qin ZHOU, Kan HUANG, Hongfei JIA, Xiaochen SHEN, Zhenmeng PENG, Hisao KATO
  • Publication number: 20230282466
    Abstract: A sputtering magnetron apparatus is provided. Another aspect employs a set of magnet assembly that forms a magnetic field over the target surface to confine electrons. A further aspect of a sputtering magnetron includes a side dark space shield that is made of magnetic metal which shunts the magnetic flux leaking from the side to prevent the formation of a secondary plasma around the dark space shield when it operates simultaneously with another plasma source.
    Type: Application
    Filed: March 6, 2022
    Publication date: September 7, 2023
    Applicant: SCION PLASMA LLC
    Inventor: LI QIN ZHOU
  • Patent number: 11715834
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precursors in a stream of CO and H2 gas mixture.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: August 1, 2023
    Assignees: Toyota Motor Engineering and Manufacturing North America, Inc., The University of Akron
    Inventors: Li Qin Zhou, Kan Huang, Hongfei Jia, Xiaochen Shen, Zhenmeng Peng, Hisao Kato
  • Patent number: 11387464
    Abstract: An electrode catalyst for an oxygen reduction reaction including intermetallic L10-NiPtAg alloy nanoparticles having enhanced ORR activity and durability. The catalyst including intermetallic L10-NiPtAg alloy nanoparticles is synthesized by employing silver (Ag) as a dopant and annealing under specific conditions to form the intermetallic structure. In one example, the intermetallic L10-NiPtAg alloy nanoparticles are represented by the formula: NixPtyAgz wherein 0.4?x?0.6, 0.4?y?0.6, z?0.1.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: July 12, 2022
    Assignee: TOYOTA MOTOR ENGINEERING AND MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kecheng Wei, Tomoyuki Nagai, Li Qin Zhou, Hongfei Jia
  • Publication number: 20210202957
    Abstract: A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precurors in a stream of CO and H2 gas mixture.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Applicant: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Kan Huang, Hongfei Jia, Xiaochen Shen, Zhenmeng Peng, Hisao Kato
  • Publication number: 20210184227
    Abstract: An electrode catalyst for an oxygen reduction reaction including intermetallic L10-NiPtAg alloy nanoparticles having enhanced ORR activity and durability. The catalyst including intermetallic L10-NiPtAg alloy nanoparticles is synthesized by employing silver (Ag) as a dopant and annealing under specific conditions to form the intermetallic structure. In one example, the intermetallic L10-NiPtAg alloy nanoparticles are represented by the formula: NixPtyAgz wherein 0.4?x?0.6, 0.4?y?0.6, z?0.1.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Applicant: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventors: Kecheng Wei, Tomoyuki Nagai, Li Qin Zhou, Hongfei Jia
  • Patent number: 10927465
    Abstract: An oxygen evolution catalyst of the formula: Sr2MCoO5 where M=Al, Ga wherein M is bonded with four oxygen atoms to form a tetrahedron. The catalyst is operated at a potential of less than 1.58 volts vs. RHE at a current density of 50 ?A/cm2 for a pH of 7-13. The catalyst is operated at a potential of less than 1.55 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 13. The oxygen evolution catalyst of the formula: Sr2GaCoO5 wherein the catalyst is operated at a potential of less than 1.53 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 7. The oxygen evolution catalyst of formula: Sr2GaCoO5 wherein the catalyst maintains a current within 94% after 300 minutes at a potential of 1.645 volts vs. RHE wherein the current is greater than 1 milliamp and a pH of 7.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 23, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Krishna Reddy Gunugunuri, Chen Ling, Hongfei Jia
  • Patent number: 10875015
    Abstract: Methods for making porous materials having metal alloy nanoparticles formed therein are described herein. By preparing a porous material and delivering the precursor solutions under vacuum, the metal precursors can be uniformly embedded within the pores of the porous material. Once absorption is complete, the porous material can be heated in the presence of one or more functional gases to reduce the metal precursors to metal alloy nanoparticles, and embed the metal alloy nanoparticles inside of the pores. As such, the metal alloy nanoparticles can be formed within the pores, while avoiding surface wetting and absorption problems which can occur with small pores.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 29, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, The University of Akron
    Inventors: Li Qin Zhou, Kan Huang, Tomoyuki Nagai, Hongfei Jia, Hisao Kato, Xiaochen Shen, Zhenmeng Peng
  • Patent number: 10672966
    Abstract: A process for manufacturing a thermoelectric material having a plurality of grains and grain boundaries. The process includes determining a material composition to be investigated for the thermoelectric material and then determining a range of values of grain size and/or grain boundary barrier height obtainable for the material composition using current state of the art manufacturing techniques. Thereafter, a range of figure of merit values for the material composition is determined as a function of the range of values of grain size and/or grain boundary barrier height. And finally, a thermoelectric material having the determined material composition and an average grain size and grain boundary barrier height corresponding to the maximum range of figure of merit values is manufactured.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: June 2, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Debasish Banerjee, Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Takuji Kita
  • Publication number: 20200094238
    Abstract: Methods for making porous materials having metal alloy nanoparticles formed therein are described herein. By preparing a porous material and delivering the precursor solutions under vacuum, the metal precursors can be uniformly embedded within the pores of the porous material. Once absorption is complete, the porous material can be heated in the presence of one or more functional gases to reduce the metal precursors to metal alloy nanoparticles, and embed the metal alloy nanoparticles inside of the pores. As such, the metal alloy nanoparticles can be formed within the pores, while avoiding surface wetting and absorption problems which can occur with small pores.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Li Qin Zhou, Kan Huang, Tomoyuki Nagai, Hongfei Jia, Hisao Kato, Xiaochen Shen, Zhenmeng Peng
  • Publication number: 20180142364
    Abstract: An oxygen evolution catalyst of the formula: Sr2MCoO5 where M=Al, Ga wherein M is bonded with four oxygen atoms to form a tetrahedron. The catalyst is operated at a potential of less than 1.58 volts vs. RHE at a current density of 50 ?A/cm2 for a pH of 7-13. The catalyst is operated at a potential of less than 1.55 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 13. The oxygen evolution catalyst of the formula: Sr2GaCoO5 wherein the catalyst is operated at a potential of less than 1.53 volts vs. RHE at a current density of 50 ?A/cm2 and a pH of 7. The oxygen evolution catalyst of formula: Sr2GaCoO5 wherein the catalyst maintains a current within 94% after 300 minutes at a potential of 1.645 volts vs. RHE wherein the current is greater than 1 milliamp and a pH of 7.
    Type: Application
    Filed: February 28, 2017
    Publication date: May 24, 2018
    Inventors: Li Qin Zhou, Krishna Reddy Gunugunuri, Chen Ling, Hongfei Jia
  • Patent number: 9847470
    Abstract: A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 19, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Debasish Banerjee
  • Patent number: 9810824
    Abstract: A multilayer thin film that reflects an omnidirectional high chroma red structural color. The multilayer thin film may include a reflector layer, at least one absorber layer extending across the reflector layer, and an outer dielectric layer extending across the at least one absorber layer. The multilayer thin film reflects a single narrow band of visible light when exposed to white light and the outer dielectric layer has a thickness of less than or equal to 2.0 quarter wave (QW) of a center wavelength of the single narrow band of visible light.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: November 7, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Debasish Banerjee, Li Qin Zhou
  • Patent number: 9739917
    Abstract: A multilayer stack displaying a red omnidirectional structural color. The multilayer stack includes a reflector layer, a dielectric layer extending across the reflector layer, and an absorbing layer extending across the dielectric layer. The dielectric layer reflects more than 70% of incident white light that has a wavelength greater than 580 nanometers (nm). In addition, the absorbing layer absorbs more than 70% of the incident white light with a wavelength less than 580 nm. In combination, the reflector layer, dielectric layer, and absorbing layer form an omnidirectional reflector that reflects a narrow band of electromagnetic radiation with a center wavelength between 580-680 nm, has a width of less than 200 nm wide and a color shift of less than 100 nm when the reflector is viewed from angles between 0 and 45 degrees.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 22, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Debasish Banerjee, Minjuan Zhang, Masahiko Ishii, Li Qin Zhou, Yumi Kato
  • Patent number: 9435042
    Abstract: Systems and methods for the electrochemical reduction of carbon dioxide are disclosed. The systems involve an electrochemical cell having a cathode of anodized silver and the methods involve introducing carbon dioxide into such a system and applying a potential. The disclosed systems and methods have improved carbon monoxide production selectivity, support higher current density, and have improved efficiency in comparison to existing silver-based CO2 electroreduction devices.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 6, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Chen Ling, Hongfei Jia
  • Publication number: 20160245969
    Abstract: A multilayer thin film that reflects an omnidirectional high chroma red structural color. The multilayer thin film may include a reflector layer, at least one absorber layer extending across the reflector layer, and an outer dielectric layer extending across the at least one absorber layer. The multilayer thin film reflects a single narrow band of visible light when exposed to white light and the outer dielectric layer has a thickness of less than or equal to 2.0 quarter wave (QW) of a center wavelength of the single narrow band of visible light.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Debasish Banerjee, Li Qin Zhou
  • Publication number: 20160115605
    Abstract: Systems and methods for the electrochemical reduction of carbon dioxide are disclosed. The systems involve an electrochemical cell having a cathode of anodized silver and the methods involve introducing carbon dioxide into such a system and applying a potential. The disclosed systems and methods have improved carbon monoxide production selectivity, support higher current density, and have improved efficiency in comparison to existing silver-based CO2 electroreduction devices.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 28, 2016
    Inventors: Li Qin Zhou, Chen Ling, Hongfei Jia
  • Publication number: 20160056362
    Abstract: A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
    Type: Application
    Filed: July 13, 2012
    Publication date: February 25, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Debasish Banerjee
  • Publication number: 20150372180
    Abstract: A band gap material includes an alloy of cadmium, tellurium and magnesium. The alloy is doped with oxygen wherein the alloy includes an intermediate band positioned between conduction and valance bands of the alloy. The alloy has the formula: Cd1-xMgxTeOy wherein 0.1?x?0.75 and y?0.1.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Inventors: Li Qin Zhou, Chen Ling, Hongfei Jia, Jamie Dean Phillips, Chihyu Chen
  • Patent number: 9028725
    Abstract: A process for densifying a composite material is provided. In some instances, the process can reduce stress in a sintered component such that improved densification and/or properties of the component is provided. The process includes providing a mixture of a first material particles and second material particles, pre-sintering the mixture at a first pressure and a first temperature in order to form a pre-sintered component, and then crushing, grinding, and sieving the pre-sintered component in order to form or obtain a generally uniform composite powder. The uniform composite powder is then sintered at a second pressure and a second temperature to form a sintered component, the second pressure being greater than the second pressure.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: May 12, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Michael Paul Rowe