Patents by Inventor Li-Shyue Lai

Li-Shyue Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369107
    Abstract: An integrated circuit device includes a dielectric structure within a metal interconnect over a substrate. The dielectric structure includes a cavity. A first dielectric layer provides a roof for the cavity. A second dielectric layer provides a floor for the cavity. A material distinct from the first dielectric layer and the second dielectric layer provides a side edge for the cavity. In a central area of the cavity, the cavity has a constant height. The height may be selected to provide a low parasitic capacitance between features above and below the cavity. The roof of the cavity may be flat. A gate dielectric may be formed over the roof. The dielectric structure is particularly useful for reducing parasitic capacitances when employing back-end-of-line (BEOL) transistors.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Li-Shyue Lai, Gao-Ming Wu, Katherine H. Chiang, Chung-Te Lin
  • Publication number: 20230138939
    Abstract: A plurality of vertical stacks may be formed over a substrate. Each of the vertical stacks includes, from bottom to top, a bottom electrode, a dielectric pillar, and a top electrode. A continuous active layer and a gate dielectric layer may be formed over the plurality of vertical stacks. Sacrificial spacers are formed around the plurality of vertical stacks. At least one dielectric wall structure may be formed around the sacrificial spacers by filling gaps between neighboring pairs of the sacrificial spacers with a dielectric fill material. The sacrificial spacers are replaced with gate electrodes. Each of the gate electrodes may laterally surround a respective row of vertical stacks that are arranged along a first horizontal direction.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 4, 2023
    Inventors: Gao-Ming WU, Li-Shyue LAI, Katherine H. CHIANG, Chung-Te LIN
  • Publication number: 20230038958
    Abstract: A memory device includes an alternating stack of dielectric layers and word line layers, pairs of bit lines and source lines spaced apart from one another, a data storage layer covering a sidewall of the alternating stack, and channel layers interposed between the data storage layer and the pairs of bit lines and source lines. The alternating stack includes a staircase structure in a staircase-shaped region, and the staircase structure steps downward from a first direction and includes at least one turn. The pairs of bit lines and source lines extend in a second direction that is substantially perpendicular to the first direction and are in lateral contact with the data storage layer through the channel layers. A semiconductor structure and a method are also provided.
    Type: Application
    Filed: February 11, 2022
    Publication date: February 9, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Chien-Hao Huang, Chia-Yu Ling, Katherine H CHIANG, Chung-Te Lin
  • Publication number: 20220328346
    Abstract: An integrated circuit device includes a dielectric structure within a metal interconnect over a substrate. The dielectric structure includes a cavity. A first dielectric layer provides a roof for the cavity. A second dielectric layer provides a floor for the cavity. A material distinct from the first dielectric layer and the second dielectric layer provides a side edge for the cavity. In a central area of the cavity, the cavity has a constant height. The height may be selected to provide a low parasitic capacitance between features above and below the cavity. The roof of the cavity may be flat. A gate dielectric may be formed over the roof. The dielectric structure is particularly useful for reducing parasitic capacitances when employing back-end-of-line (BEOL) transistors.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 13, 2022
    Inventors: Li-Shyue Lai, Gao-Ming Wu, Katherine H. Chiang, Chung-Te Lin
  • Patent number: 10861958
    Abstract: Examples of an integrated circuit with a gate stack and a method for forming the integrated circuit are provided herein. In some examples, a method includes receiving a workpiece that includes: a pair of sidewall spacers disposed over a channel region, a gate dielectric disposed on the channel region and extending along a vertical surface of a first spacer of the pair of sidewall spacers, and a capping layer disposed on the high-k gate dielectric and extending along the vertical surface. A shaping feature is formed on the capping layer and the high-k gate dielectric. A first portion of the high-k gate dielectric and a first portion of the capping layer disposed between the shaping feature and the first spacer are removed to leave a second portion of the high-k gate dielectric and a second portion of the capping layer extending along the vertical surface.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuan-Lun Cheng, Li-Shyue Lai, Ching-Wei Tsai, Kai-Chieh Yang
  • Publication number: 20190259862
    Abstract: Examples of an integrated circuit with a gate stack and a method for forming the integrated circuit are provided herein. In some examples, a method includes receiving a workpiece that includes: a pair of sidewall spacers disposed over a channel region, a gate dielectric disposed on the channel region and extending along a vertical surface of a first spacer of the pair of sidewall spacers, and a capping layer disposed on the high-k gate dielectric and extending along the vertical surface. A shaping feature is formed on the capping layer and the high-k gate dielectric. A first portion of the high-k gate dielectric and a first portion of the capping layer disposed between the shaping feature and the first spacer are removed to leave a second portion of the high-k gate dielectric and a second portion of the capping layer extending along the vertical surface.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Kuan-Lun Cheng, Li-Shyue Lai, Ching-Wei Tsai, Kai-Chieh Yang
  • Patent number: 10283623
    Abstract: Examples of an integrated circuit with a gate stack and a method for forming the integrated circuit are provided herein. In some examples, a method includes receiving a workpiece that includes: a pair of sidewall spacers disposed over a channel region, a gate dielectric disposed on the channel region and extending along a vertical surface of a first spacer of the pair of sidewall spacers, and a capping layer disposed on the high-k gate dielectric and extending along the vertical surface. A shaping feature is formed on the capping layer and the high-k gate dielectric. A first portion of the high-k gate dielectric and a first portion of the capping layer disposed between the shaping feature and the first spacer are removed to leave a second portion of the high-k gate dielectric and a second portion of the capping layer extending along the vertical surface.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuan-Lun Cheng, Li-Shyue Lai, Ching-Wei Tsai, Kai-Chieh Yang
  • Publication number: 20190035917
    Abstract: Examples of an integrated circuit with a gate stack and a method for forming the integrated circuit are provided herein. In some examples, a method includes receiving a workpiece that includes: a pair of sidewall spacers disposed over a channel region, a gate dielectric disposed on the channel region and extending along a vertical surface of a first spacer of the pair of sidewall spacers, and a capping layer disposed on the high-k gate dielectric and extending along the vertical surface. A shaping feature is formed on the capping layer and the high-k gate dielectric. A first portion of the high-k gate dielectric and a first portion of the capping layer disposed between the shaping feature and the first spacer are removed to leave a second portion of the high-k gate dielectric and a second portion of the capping layer extending along the vertical surface.
    Type: Application
    Filed: November 14, 2017
    Publication date: January 31, 2019
    Inventors: Kuan-Lun Cheng, Li-Shyue Lai, Ching-Wei Tsai, Kai-Chieh Yang
  • Patent number: 9461041
    Abstract: A device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: October 4, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Publication number: 20150115372
    Abstract: A device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Patent number: 8921218
    Abstract: A method and device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Publication number: 20130307088
    Abstract: A method and device including a substrate having a fin. A metal gate structure is formed on the fin. The metal gate structure includes a stress metal layer formed on the fin such that the stress metal layer extends to a first height from an STI feature, the first height being greater than the fin height. A conduction metal layer is formed on the stress metal layer.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Yu-Lin Yang, Tsu-Hsiu Perng, Chih Chieh Yeh, Li-Shyue Lai
  • Patent number: 8466505
    Abstract: A semiconductor device and a method of forming the same. The semiconductor device comprises a gate structure comprising a tunnel oxide over a substrate; a floating gate over the tunnel oxide; a dielectric over the floating gate; and a control gate over the dielectric. The semiconductor device further comprises: spacers along opposite edges of the gate structure; a first impurity region doped with a first type of dopant laterally spaced apart from a first edge of the gate structure; and a second impurity region doped with a second type of dopant, opposite from the first type, the drain being substantially under the drain spacer and substantially aligned with a second edge of the gate structure.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: June 18, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Hung-Wei Chen, Wen-Chin Lee, Min-Hwa Chi
  • Patent number: 8455321
    Abstract: A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: June 4, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Jing-Cheng Lin
  • Patent number: 8264021
    Abstract: A Fin field effect transistor (FinFET) includes a fin-channel body over a substrate. A gate electrode is disposed over the fin-channel body. At least one source/drain (S/D) region is disposed adjacent to the fin-channel body. The at least one S/D region is substantially free from including any fin structure.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Tsz-Mei Kwok, Chih Chieh Yeh, Clement Hsingjen Wann
  • Patent number: 8263959
    Abstract: A method of manufacturing a memory device is provided. The method includes forming an electrode over a substrate. The method also includes forming an opening in the electrode to provide a tapered electrode contact surface proximate the opening. The method further includes forming a phase change feature over the electrode and on the tapered electrode contact surface.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsiung Wang, Li-Shyue Lai, Denny Tang, Wen-Chin Lin
  • Patent number: 8153471
    Abstract: A phase change memory structure and method for forming the same, the method including providing a substrate comprising a conductive area; forming a spacer having a partially exposed sidewall region at an upper portion of the spacer defining a phase change memory element contact area; and, wherein the spacer bottom portion partially overlaps the conductive area. Both these two methods can reduce active area of a phase change memory element, therefore, reducing a required phase changing electrical current.
    Type: Grant
    Filed: November 14, 2010
    Date of Patent: April 10, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Li-Shyue Lai, Chao-Hsiung Wang, Denny Tang, Wen-Chin Lin
  • Publication number: 20120058628
    Abstract: A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
    Type: Application
    Filed: November 11, 2011
    Publication date: March 8, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Jing-Cheng Lin
  • Patent number: 8058692
    Abstract: A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: November 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Jing-Cheng Lin
  • Patent number: 8022382
    Abstract: A phase change memory device and a method of forming the same are provided. The phase change memory device includes a conducting electrode in a dielectric layer, a bottom electrode over the conducting electrode, a phase change layer over the bottom electrode, and a top electrode over the phase change layer. The phase change memory device may further include a heat sink layer between the phase change layer and the top electrode. The resistivities of the bottom electrode and the top electrode are preferably greater than the resistivity of the phase change material in the crystalline state.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: September 20, 2011
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., Ritek Corporation
    Inventors: Li-Shyue Lai, Denny Duan-lee Tang, Wen-chin Lin, Teng-Chien Yu, Hui-Fang Tsai, Wei-Hsiang Wang, Shyhyeu Wang