Patents by Inventor LI-WEI YIN
LI-WEI YIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220059685Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin parallel to each other and protruding higher than top surfaces of isolation regions. The isolation regions include a portion between the first and the second semiconductor fins. The method further includes forming a gate stack crossing over the first and the second semiconductor fins, etching a portion of the gate stack to form an opening, wherein the portion of the isolation regions, the first semiconductor fin, and the second semiconductor fin are exposed to the opening, etching the first semiconductor fin, the second semiconductor fin, and the portion of the isolation regions to extend the opening into a bulk portion of a semiconductor substrate below the isolation regions, and filling the opening with a dielectric material to form a cut-fin isolation region.Type: ApplicationFiled: November 8, 2021Publication date: February 24, 2022Inventors: Shiang-Bau Wang, Li-Wei Yin, Shao-Hua Hsu
-
Publication number: 20210351084Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a gate stack disposed on the first fin; a source/drain region disposed in the first fin; a contact etch stop layer (CESL) disposed over the source/drain region; a gate spacer extending along a side of the gate stack; and a dielectric plug disposed between the CESL and the gate spacer, where the dielectric plug, the CESL, the gate spacer, and the source/drain region collectively define a void physically separating the gate stack from the source/drain region.Type: ApplicationFiled: July 19, 2021Publication date: November 11, 2021Inventors: Shiang-Bau Wang, Li-Wei Yin, Chen-Huang Huang, Ming-Jhe Sie, Ryan Chia-Jen Chen
-
Patent number: 11171236Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin parallel to each other and protruding higher than top surfaces of isolation regions. The isolation regions include a portion between the first and the second semiconductor fins. The method further includes forming a gate stack crossing over the first and the second semiconductor fins, etching a portion of the gate stack to form an opening, wherein the portion of the isolation regions, the first semiconductor fin, and the second semiconductor fin are exposed to the opening, etching the first semiconductor fin, the second semiconductor fin, and the portion of the isolation regions to extend the opening into a bulk portion of a semiconductor substrate below the isolation regions, and filling the opening with a dielectric material to form a cut-fin isolation region.Type: GrantFiled: October 5, 2018Date of Patent: November 9, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shiang-Bau Wang, Li-Wei Yin, Shao-Hua Hsu
-
Publication number: 20210280695Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.Type: ApplicationFiled: May 20, 2021Publication date: September 9, 2021Inventors: Ryan Chia-Jen Chen, Li-Wei Yin, Tzu-Wen Pan, Cheng-Chung Chang, Shao-Hua Hsu, Yi-Chun Chen, Yu-Hsien Lin, Ming-Ching Chang
-
Patent number: 11114549Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.Type: GrantFiled: March 1, 2018Date of Patent: September 7, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ryan Chia-Jen Chen, Ming-Ching Chang, Yi-Chun Chen, Yu-Hsien Lin, Li-Wei Yin, Tzu-Wen Pan, Cheng-Chung Chang, Shao-Hua Hsu
-
Patent number: 11069579Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a gate stack disposed on the first fin; a source/drain region disposed in the first fin; a contact etch stop layer (CESL) disposed over the source/drain region; a gate spacer extending along a side of the gate stack; and a dielectric plug disposed between the CESL and the gate spacer, where the dielectric plug, the CESL, the gate spacer, and the source/drain region collectively define a void physically separating the gate stack from the source/drain region.Type: GrantFiled: June 3, 2019Date of Patent: July 20, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shiang-Bau Wang, Li-Wei Yin, Chen-Huang Huang, Ming-Jhe Sie, Ryan Chia-Jen Chen
-
Patent number: 10872897Abstract: A semiconductor structure includes a first metal gate disposed over a first device region of a semiconductor substrate, where the first metal gate includes a first work function metal layer, a second metal gate disposed over a second device region of the semiconductor substrate, where the second metal gate includes a second work function metal layer, a first gate cut feature separating the first metal gate, where sidewalls of the first gate cut feature are defined by the first work function metal layer and a bulk conductive layer, and a second gate cut feature separating the second metal gate, where sidewalls of the second gate cut feature are defined by the second work function metal layer but not by the bulk conductive layer.Type: GrantFiled: May 18, 2020Date of Patent: December 22, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Publication number: 20200279854Abstract: A semiconductor structure includes a first metal gate disposed over a first device region of a semiconductor substrate, where the first metal gate includes a first work function metal layer, a second metal gate disposed over a second device region of the semiconductor substrate, where the second metal gate includes a second work function metal layer, a first gate cut feature separating the first metal gate, where sidewalls of the first gate cut feature are defined by the first work function metal layer and a bulk conductive layer, and a second gate cut feature separating the second metal gate, where sidewalls of the second gate cut feature are defined by the second work function metal layer but not by the bulk conductive layer.Type: ApplicationFiled: May 18, 2020Publication date: September 3, 2020Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Patent number: 10658372Abstract: A method includes providing metal gate structures in a first and a second region, respectively, of a semiconductor substrate, simultaneously cutting the metal gate structures by a two-step etching process to form a first and a second trench in metal gate structures of the first and the second region, respectively, and filling each trench with an insulating material to form a first and a second gate isolation structure. Each step of the two-step etching process employs different etching chemicals and conditions. The metal gate structures in the first region and the second region differ in gate lengths and composition of gate electrode.Type: GrantFiled: September 23, 2019Date of Patent: May 19, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Publication number: 20200126868Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a gate stack disposed on the first fin; a source/drain region disposed in the first fin; a contact etch stop layer (CESL) disposed over the source/drain region; a gate spacer extending along a side of the gate stack; and a dielectric plug disposed between the CESL and the gate spacer, where the dielectric plug, the CESL, the gate spacer, and the source/drain region collectively define a void physically separating the gate stack from the source/drain region.Type: ApplicationFiled: June 3, 2019Publication date: April 23, 2020Inventors: Shiang-Bau Wang, Li-Wei Yin, Chen-Huang Huang, Ming-Jhe Sie, Ryan Chia-Jen Chen
-
Publication number: 20200044070Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin parallel to each other and protruding higher than top surfaces of isolation regions. The isolation regions include a portion between the first and the second semiconductor fins. The method further includes forming a gate stack crossing over the first and the second semiconductor fins, etching a portion of the gate stack to form an opening, wherein the portion of the isolation regions, the first semiconductor fin, and the second semiconductor fin are exposed to the opening, etching the first semiconductor fin, the second semiconductor fin, and the portion of the isolation regions to extend the opening into a bulk portion of a semiconductor substrate below the isolation regions, and filling the opening with a dielectric material to form a cut-fin isolation region.Type: ApplicationFiled: October 5, 2018Publication date: February 6, 2020Inventors: Shiang-Bau Wang, Li-Wei Yin, Shao-Hua Hsu
-
Publication number: 20200020701Abstract: A method includes providing metal gate structures in a first and a second region, respectively, of a semiconductor substrate, simultaneously cutting the metal gate structures by a two-step etching process to form a first and a second trench in metal gate structures of the first and the second region, respectively, and filling each trench with an insulating material to form a first and a second gate isolation structure. Each step of the two-step etching process employs different etching chemicals and conditions. The metal gate structures in the first region and the second region differ in gate lengths and composition of gate electrode.Type: ApplicationFiled: September 23, 2019Publication date: January 16, 2020Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Patent number: 10424588Abstract: A method includes providing metal gate structures in a first and a second region, respectively, of a semiconductor substrate, simultaneously cutting the metal gate structures by a two-step etching process to form a first and a second trench in metal gate structures of the first and the second region, respectively, and filling each trench with an insulating material to form a first and a second gate isolation structure. Each step of the two-step etching process employs different etching chemicals and conditions. The metal gate structures in the first region and the second region differ in gate lengths and composition of gate electrode.Type: GrantFiled: November 9, 2017Date of Patent: September 24, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Patent number: 10325912Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.Type: GrantFiled: October 30, 2017Date of Patent: June 18, 2019Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ryan Chia-Jen Chen, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang
-
Publication number: 20190165137Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin and a second fin on a substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes a liner on a first sidewall of the first fin, and an insulating fill material on a sidewall of the liner and on a second sidewall of the first fin. The liner is further on a surface of the first fin between the first sidewall of the first fin and the second sidewall of the first fin.Type: ApplicationFiled: March 1, 2018Publication date: May 30, 2019Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ryan Chia-Jen CHEN, Ming-Ching CHANG, Yi-Chun CHEN, Yu-Hsien LIN, Li-Wei YIN, Tzu-Wen PAN, Cheng-Chung CHANG, Shao-Hua HSU
-
Publication number: 20190139969Abstract: A method includes providing metal gate structures in a first and a second region, respectively, of a semiconductor substrate, simultaneously cutting the metal gate structures by a two-step etching process to form a first and a second trench in metal gate structures of the first and the second region, respectively, and filling each trench with an insulating material to form a first and a second gate isolation structure. Each step of the two-step etching process employs different etching chemicals and conditions. The metal gate structures in the first region and the second region differ in gate lengths and composition of gate electrode.Type: ApplicationFiled: November 9, 2017Publication date: May 9, 2019Inventors: Li-Wei Yin, Shu-Yuan Ku, Chun-Fai Cheng
-
Publication number: 20190131297Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.Type: ApplicationFiled: October 30, 2017Publication date: May 2, 2019Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: RYAN CHIA-JEN CHEN, LI-WEI YIN, TZU-WEN PAN, YI-CHUN CHEN, CHENG-CHUNG CHANG, SHAO-HUA HSU, YU-HSIEN LIN, MING-CHING CHANG
-
Publication number: 20190131298Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.Type: ApplicationFiled: November 30, 2018Publication date: May 2, 2019Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen