Patents by Inventor Li-Wen Hung

Li-Wen Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170329003
    Abstract: A system and method are provided. The system includes a data reader having a processor for performing a signal frequency analysis, an ultrasound transmitter for transmitting ultrasound signals, and an ultrasound receiver for receiving reflected ultrasound signals. The system further includes a movable reflector for receiving the ultrasound signals and reflecting the ultrasounds signals back to the receiver (a) as the reflected ultrasound signals without modulation when the reflector is stationary and (b) as the reflected ultrasound signals with modulation when the reflector is mobile. The system also includes a chip for storing a specification of motion states for the reflector. The processor performs the signal frequency analysis to detect a presence or an absence of modulated frequency components in a received ultrasound signal and outputs a first value or a second value respectively depending upon whether the presence or the absence of the modulated frequency components is detected.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 16, 2017
    Inventors: Li-Wen Hung, Reinaldo Vega
  • Patent number: 9818054
    Abstract: A data readout device is provided and includes a reflective base, reflective sidewalls disposed about the reflective base and an actuation system. The actuation system is configured to modify relative positioning of one of the reflective base and the reflective sidewalls to either reflect incoming radiation back toward an origin thereof or to reflect the incoming radiation away from the origin thereof.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: November 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Evan G. Colgan, Fuad E. Doany, Li-Wen Hung, Reinaldo A. Vega, Bucknell C. Webb
  • Publication number: 20170297900
    Abstract: MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 19, 2017
    Inventors: Michael J. DANEMAN, Martin LIM, Xiang LI, Li-Wen HUNG
  • Patent number: 9748131
    Abstract: A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Robert D. Allen, Paul S. Andry, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker, Cornelia K. Tsang
  • Patent number: 9735077
    Abstract: A method of forming an electrical device is provided that includes forming microprocessor devices on a microprocessor die; forming memory devices on an memory device die; forming component devices on a component die; and forming a plurality of packing devices on a packaging die. Transferring a plurality of each of said microprocessor devices, memory devices, component devices and packaging components to a supporting substrate, wherein the packaging components electrically interconnect the memory devices, component devices and microprocessor devices in individualized groups. Sectioning the supporting substrate to provide said individualized groups of memory devices, component devices and microprocessor devices that are interconnected by a packaging component.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Qianwen Chen, Li-Wen Hung, Wanki Kim, John U. Knickerbocker, Kenneth P. Rodbell, Robert L. Wisnieff
  • Publication number: 20170194185
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The the at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20170194186
    Abstract: Various embodiments process semiconductor devices. In one embodiment, a release layer is applied to a handler. The release layer comprises at least one additive that adjusts a frequency of electro-magnetic radiation absorption property of the release layer. The additive comprises, for example, a 355 nm chemical absorber and/or chemical absorber for one of more wavelengths in a range comprising 600 nm to 740 nm. The at least one singulated semiconductor device is bonded to the handler. The at least one singulated semiconductor device is packaged while it is bonded to the handler. The release layer is ablated by irradiating the release layer through the handler with a laser. The at least one singulated semiconductor device is removed from the transparent handler after the release layer has been ablated.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 6, 2017
    Inventors: Paul S. ANDRY, Bing DANG, Jeffrey Donald GELORME, Li-Wen HUNG, John U. KNICKERBOCKER, Cornelia Tsang YANG
  • Publication number: 20170180870
    Abstract: A wearable monitoring system includes a microelectromechanical (MEMS) microphone to receive acoustic signal data through skin of a user. An integrated circuit chip is bonded to and electrically connected to the MEMS microphone. A portable power source is connected to at least the integrated circuit chip. A flexible substrate is configured to encapsulate and affix the MEMS microphone and the integrated circuit chip to the skin of the user.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Li-Wen Hung, John U. Knickerbocker
  • Patent number: 9653441
    Abstract: After forming an opening extending through a (100) silicon layer and a buried insulator layer and into a (111) silicon layer of a semiconductor-on-insulator (SOI) substrate, a light-emitting element is formed within the opening. A portion of the (111) silicon layer located beneath the light-emitting element is patterned to form a patterned structure for tuning light emission characteristics and enhancing efficiency of the light-emitting element. Next, at least one field effect transistor (FET) is formed on the (100) silicon layer for driving the light-emitting element.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: May 16, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chia-Yu Chen, Li-Wen Hung, Jui-Hsin Lai, Ko-Tao Lee
  • Patent number: 9617141
    Abstract: MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: April 11, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Michael Julian Daneman, Martin Lim, Xiang Li, Li-Wen Hung
  • Patent number: 9601364
    Abstract: A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: March 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert D. Allen, Paul S. Andry, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker, Cornelia K. Tsang
  • Patent number: 9515216
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: December 6, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Patent number: 9496230
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: November 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Publication number: 20160329233
    Abstract: A bonded structure contains a substrate containing at least one feature, the substrate having a top surface; a first release layer overlying the top surface of the substrate, the first release layer being absorptive of light having a first wavelength for being decomposed by the light; an adhesive layer overlying the first release layer, and a second release layer overlying the adhesive layer. The second release layer is absorptive of light having a second wavelength for being decomposed by the light having the second wavelength. The bonded structure further contains a handle substrate that overlies the second release layer, where the handle substrate is substantially transparent to the light having the first wavelength and the second wavelength. Also disclosed is a debonding method to process the bonded structure to remove and reclaim the adhesive layer for re-use. In another embodiment a multi-step method optically cuts and debonds a bonded structure.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Paul S. Andry, Russell A. Budd, Bing Dang, Li-Wen Hung, John U. Knickerbocker, Cornelia Kang-I Tsang
  • Publication number: 20160322314
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Application
    Filed: June 10, 2016
    Publication date: November 3, 2016
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Publication number: 20160322313
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Publication number: 20160322529
    Abstract: Embodiments relate to the detection of semiconductor tampering with a light-sensitive circuit. A tamper detection device for an integrated circuit includes a light-sensitive circuit disposed within a package of an integrated circuit. The light-sensitive circuit closes in response to an exposure to a light source, indicating a tamper condition.
    Type: Application
    Filed: June 19, 2015
    Publication date: November 3, 2016
    Inventors: Qing Cao, Shu-Jen Han, Li-Wen Hung
  • Publication number: 20160204015
    Abstract: A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Robert D. Allen, Paul S. Andry, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker, Cornelia K. Tsang
  • Publication number: 20160133499
    Abstract: An adhesive bonding method that includes bonding a handling wafer to a front side surface of a device wafer with an adhesive comprising N-substituted maleimide copolymers. The device wafer may then be thinned from the backside surface of the device wafer while the device wafer is adhesively engaged to the handling wafer. The adhesive can then be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Application
    Filed: September 25, 2015
    Publication date: May 12, 2016
    Inventors: ROBERT D. ALLEN, JEFFREY GELORME, LI-WEN HUNG, RATNAM SOORIYAKUMARAN, LINDA K. SUNDBERG
  • Publication number: 20160133498
    Abstract: A method for adhesive bonding in microelectronic device processing is provided that includes bonding a handling wafer to a front side of a device wafer with an adhesive comprising phenoxy resin; and thinning the device wafer from the backside of the device wafer while the device wafer is adhesively engaged to the handling wafer. After the device wafer has been thinned, the adhesive comprising phenoxy resin may be removed by laser debonding, wherein the device wafer is separated from the handling wafer.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Robert D. Allen, Paul S. Andry, Jeffrey D. Gelorme, Li-wen Hung, John U. Knickerbocker, Cornelia K. Tsang