Patents by Inventor Li Yan Miao

Li Yan Miao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10014174
    Abstract: Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 3, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Pramit Manna, Li Yan Miao, Deenesh Padhi, Bok Hoen Kim, Christopher Dennis Bencher
  • Publication number: 20170278709
    Abstract: Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
    Type: Application
    Filed: May 23, 2017
    Publication date: September 28, 2017
    Inventors: Bencherki MEBARKI, Pramit MANNA, Li Yan MIAO, Deenesh PADHI, Bok Hoen KIM, Christopher Dennis BENCHER
  • Patent number: 9659771
    Abstract: Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: May 23, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Pramit Manna, Li Yan Miao, Deenesh Padhi, Bok Hoen Kim, Christopher Dennis Bencher
  • Publication number: 20160365248
    Abstract: Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
    Type: Application
    Filed: April 25, 2016
    Publication date: December 15, 2016
    Inventors: Bencherki MEBARKI, Pramit MANNA, Li Yan MIAO, Deenesh PADHI, Bok Hoen KIM, Christopher Dennis BENCHER
  • Patent number: 9337051
    Abstract: Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Bok Hoen Kim, Deenesh Padhi, Li Yan Miao, Pramit Manna, Christopher Dennis Bencher, Mehul B. Naik, Huixiong Dai, Christopher S. Ngai, Daniel Lee Diehl
  • Publication number: 20160049305
    Abstract: Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 18, 2016
    Inventors: Bencherki MEBARKI, Bok Hoen KIM, Deenesh PADHI, Li Yan MIAO, Pramit MANNA, Christopher Dennis BENCHER, Mehul B. NAIK, Huixiong DAI, Christopher S. NGAI, Daniel Lee DIEHL
  • Publication number: 20150118832
    Abstract: Embodiments of the present invention provide a methods for patterning a hardmask layer with good process control for an ion implantation process, particularly suitable for manufacturing the fin field effect transistor (FinFET) for semiconductor chips. In one embodiment, a method of patterning a hardmask layer disposed on a substrate includes forming a planarization layer over a hardmask layer disposed on a substrate, disposing a patterned photoresist layer over the planarization layer, patterning the planarization layer and the hardmask layer uncovered by the patterned photoresist layer in a processing chamber, exposing a first portion of the underlying substrate, and removing the planarization layer from the substrate.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Inventors: Bingxi Sun WOOD, Li Yan MIAO, Huixiong DAI, Adam BRAND, Yongmei CHEN, Mandar B. PANDIT, Qingjun ZHOU
  • Patent number: 8357618
    Abstract: A method for doubling the frequency of a lithographic process using a photo-resist template mask is described. A device layer having a photo-resist layer formed thereon is first provided. The photo-resist layer is patterned to form a photo-resist template mask. A spacer-forming material layer is deposited over the photo-resist template mask. The spacer-forming material layer is etched to form a spacer mask and to expose the photo-resist template mask. The photo-resist template mask is then removed and an image of the spacer mask is finally transferred to the device layer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Dennis Bencher, Huixiong Dai, Li Yan Miao, Hao Chen
  • Patent number: 8349741
    Abstract: Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less, and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: January 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Hang Yu, Deenesh Padhi, Man-Ping Cai, Naomi Yoshida, Li Yan Miao, Siu F. Cheng, Shahid Shaikh, Sohyun Park, Heung Lak Park, Bok Hoen Kim
  • Publication number: 20120208374
    Abstract: Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less, and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Hang Yu, Deenesh Padhi, Man-Ping Cai, Naomi Yoshida, Li Yan Miao, Siu F. Cheng, Shahid Shaikh, Sohyun Park, Heung Lak Park, Bok Hoen Kim
  • Patent number: 8227352
    Abstract: Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: July 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Hang Yu, Deenesh Padhi, Man-Ping Cai, Naomi Yoshida, Li Yan Miao, Siu F. Cheng, Shahid Shaikh, Sohyun Park, Heung Lak Park, Bok Hoen Kim
  • Patent number: 8148269
    Abstract: A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Christopher D. Bencher, Yongmei Chen, Li Yan Miao, Victor Nguyen, Isabelita Roflox, Li-Qun Xia, Derek R. Witty
  • Publication number: 20120015521
    Abstract: Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
    Type: Application
    Filed: April 25, 2011
    Publication date: January 19, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hang Yu, Deenesh Padhi, Man-Ping Cai, Naomi Yoshida, Li Yan Miao, Siu F. Cheng, Shahid Shaikh, Sohyun Park, Heung Lak Park, Bok Hoen Kim
  • Patent number: 8084310
    Abstract: Embodiments of the present invention pertain to methods of forming patterned features on a substrate having a reduced pitch in two dimensions as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask. A spacer layer is formed over a two-dimensional square grid of cores with a thickness chosen to leave a dimple at the center of four cores on the corners of a square. The spacer layer is etched back to reveal the substrate at the centers of the square. Removing the core material results in double the pattern density of the lithographically defined grid of cores. The regions of exposed substrate may be filled again with core material and the process repeated to quadruple the pattern density.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Li Yan Miao, Christopher Dennis Bencher, Jen Shu
  • Patent number: 7972959
    Abstract: Embodiments of the present invention pertain to methods of forming features on a substrate using a self-aligned double patterning (SADP) process. A conformal layer of non-sacrificial material is formed over features of sacrificial structural material patterned near the optical resolution of a photolithography system using a high-resolution photomask. An anisotropic etch of the non-sacrificial layer leaves non-sacrificial ribs above a substrate. A gapfill layer deposited thereon may be etched or polished back to form alternating fill and non-sacrificial features. No hard mask is needed to form the non-sacrificial ribs, reducing the number of processing steps involved.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Li Yan Miao, Kenlin C. Huang
  • Publication number: 20100136792
    Abstract: Embodiments of the present invention pertain to methods of forming patterned features on a substrate having a reduced pitch in two dimensions as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask. A spacer layer is formed over a two-dimensional square grid of cores with a thickness chosen to leave a dimple at the center of four cores on the corners of a square. The spacer layer is etched back to reveal the substrate at the centers of the square. Removing the core material results in double the pattern density of the lithographically defined grid of cores. The regions of exposed substrate may be filled again with core material and the process repeated to quadruple the pattern density.
    Type: Application
    Filed: October 21, 2009
    Publication date: June 3, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Li Yan Miao, Christopher Dennis Bencher, Jen Shu
  • Publication number: 20100136784
    Abstract: Embodiments of the present invention pertain to methods of forming features on a substrate using a self-aligned double patterning (SADP) process. A conformal layer of non-sacrificial material is formed over features of sacrificial structural material patterned near the optical resolution of a photolithography system using a high-resolution photomask. An anisotropic etch of the non-sacrificial layer leaves non-sacrificial ribs above a substrate. A gapfill layer deposited thereon may be etched or polished back to form alternating fill and non-sacrificial features. No hard mask is needed to form the non-sacrificial ribs, reducing the number of processing steps involved.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Li Yan Miao, Kenlin C. Huang
  • Publication number: 20090263972
    Abstract: A method and apparatus are provided to form spacer materials adjacent substrate structures. In one embodiment, a method is provided for processing a substrate including placing a substrate having a substrate structure adjacent a substrate surface in a deposition chamber, depositing a spacer layer on the substrate structure and substrate surface, and etching the spacer layer to expose the substrate structure and a portion of the substrate surface, wherein the spacer layer is disposed adjacent the substrate structure. The spacer layer may comprise a boron nitride material. The spacer layer may comprise a base spacer layer and a liner layer, and the spacer layer may be etched in a two-step etching process.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 22, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Mihaela Balseanu, Christopher D. Bencher, Yongmei Chen, Li Yan Miao, Victor Nguyen, Isabelita Roflox, Li-Qun Xia, Derek R. Witty
  • Publication number: 20090111281
    Abstract: A method for doubling the frequency of a lithographic process using a photo-resist template mask is described. A device layer having a photo-resist layer formed thereon is first provided. The photo-resist layer is patterned to form a photo-resist template mask. A spacer-forming material layer is deposited over the photo-resist template mask. The spacer-forming material layer is etched to form a spacer mask and to expose the photo-resist template mask. The photo-resist template mask is then removed and an image of the spacer mask is finally transferred to the device layer.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 30, 2009
    Inventors: Christopher Dennis Bencher, Huixiong Dai, Li Yan Miao, Hao Chen