Patents by Inventor Liam P. Spencer
Liam P. Spencer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230146294Abstract: Embodiments are directed to a metal-ligand complex catalyst precursor, (L1)(L2)X(R1)(R2), and methods for producing the same from a compound of formula Q2X(R1)(R2). L1 and L2 are independently —R3—Z1 or —R4—Z1. R1 and R2 are independently selected from a hydrogen atom, (C1-C40)hydrocarbyl and, optionally, R1 and R2 are connected to form a ring having from 3 to 50 atoms in the ring, excluding hydrogen atoms. X is Si, Ge, Sn, or Pb. Each Q is independently Ar1—Y1R3— or Ar2—Y2—R4—. R3 and R4 are independently selected from —(CRC2)m—, where m is 1 or 2, and where each Rc is independently selected from the group consisting of (C1-C40)hydrocarbyl, (C1-C40)heterohydrocarbyl, and —H. Y1 and Y2 are independently S, Se, or Te. Ar1 and Ar2 are independently (C6-C50)aryl. Ar1—Y1—R3— and Ar2—Y2—R4— are not identical. Each Z1 is independently selected from Cl, Br, and I.Type: ApplicationFiled: February 10, 2021Publication date: May 11, 2023Applicant: Dow Global Technologies LLCInventors: Hien Q. Do, Philip P. Fontaine, Arkady L. Krasovskiy, Liam P. Spencer, Kelli A. Ogawa, Daniel K. Lesniewski, Russell W. Anderson
-
Publication number: 20220396647Abstract: Embodiments of the present disclosure directed towards titanium biphenylphenol polymerization precatalysts of Formula (I).Type: ApplicationFiled: November 4, 2020Publication date: December 15, 2022Applicant: Dow Global Technologies LLCInventors: Rhett A. Baillie, Roger L. Kuhlman, Liam P. Spencer
-
Patent number: 11367835Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).Type: GrantFiled: June 26, 2017Date of Patent: June 21, 2022Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials LLCInventors: Anatoliy N. Sokolov, Brian Goodfellow, Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
-
Publication number: 20220069225Abstract: The present invention relates to a polymeric charge transfer layer comprising a polymer. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device especially an organic light emitting device containing the polymeric charge transfer layer.Type: ApplicationFiled: October 27, 2015Publication date: March 3, 2022Inventors: Liam P. Spencer, Chun Liu, Minrong Zhu, Nolan T. McDougal, Shaoguang Feng, Peter Trefonas, III, David D. Devore, Zhengming Tang, Jiansheng Feng, Anatoliy N. Sokolov
-
Patent number: 11168155Abstract: Catalyst systems contain metal-ligand complexes according to formula (I): In formula (I), M is Ti, Zr, of Hf; n is 0, 1, 2, or 3; m is 1 or 2; each R1 and each R2 is independently chosen from (C1-C40)hydrocarbyl, (C1-C40)heterohydrocarbyl, (C1-C40)aryl, (C1-C40)heteroaryl, halogen, and —H; R1 and R2 are optionally covalently linked to each other; and each R3 is a hydrocarbon or heterohydrocarbon radical having an identity depending on the value of subscript m. The metal-ligand complexes may be incorporated as procatalysts in catalyst systems for polyolefin polymerization.Type: GrantFiled: February 28, 2018Date of Patent: November 9, 2021Assignee: Dow Global Technologies LLCInventors: Liam P. Spencer, David M. Pearson
-
Publication number: 20210210691Abstract: Polymeric layers suitable for organic layers of electronic devices that show reduced driving voltage and/or increased luminous efficiency.Type: ApplicationFiled: December 24, 2015Publication date: July 8, 2021Inventors: Minrong Zhu, Jichang Feng, Jing Jing Yan, Zhengming Tang, Shaoguang Feng, Hua Ren, Hong Yeop Na, Yoo-Jin Doh, Yuchen Liu, David D. Devore, Peter Trefonas, III, Liam P. Spencer
-
Patent number: 10868253Abstract: A single phase liquid formulation useful for producing an organic charge transporting film; said formulation comprising: (a) a first polymer resin having Mw less than 5,000; (b) a second polymer resin having Mw at least 7,000; (c) a first solvent having a boiling point from 50 to 165° C.; and (d) a second solvent having a boiling point from 180 to 300° C.Type: GrantFiled: September 29, 2016Date of Patent: December 15, 2020Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLCInventors: Chun Liu, Peter Trefonas, III, Sukrit Mukhopadhyay, Liam P. Spencer, David D. Devore, Ashley Inman
-
Patent number: 10818860Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.Type: GrantFiled: June 26, 2017Date of Patent: October 27, 2020Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLCInventors: Anatoliy N Sokolov, Brian Goodfellow, Robert David Grigg, Liam P Spencer, John W Kramer, David D Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
-
Publication number: 20200185604Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or a layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, RType: ApplicationFiled: October 20, 2017Publication date: June 11, 2020Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
-
Publication number: 20200052218Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).Type: ApplicationFiled: June 26, 2017Publication date: February 13, 2020Inventors: Anatoliy N. SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P. SPENCER, John W. KRAMER, David D. DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
-
Publication number: 20200010582Abstract: Catalyst systems contain metal-ligand complexes according to formula (I): In formula (I), M is Ti, Zr, of Hf; n is 0, 1, 2, or 3; m is 1 or 2; each R1 and each R2 is independently chosen from (C1-C40)hydrocarbyl, (C1-C40)heterohydrocarbyl, (C1-C40)aryl, (C1-C40)heteroaryl, halogen, and —H; R1 and R2 are optionally covalently linked to each other; and each R3 is a hydrocarbon or heterohydrocarbon radical having an identity depending on the value of subscript m. The metal-ligand complexes may be incorporated as procatalysts in catalyst systems for polyolefin polymerization.Type: ApplicationFiled: February 28, 2018Publication date: January 9, 2020Applicant: Dow Global Technologies LLCInventors: Liam P. Spencer, David M. Pearson
-
Publication number: 20190334106Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.Type: ApplicationFiled: June 26, 2017Publication date: October 31, 2019Inventors: Anatoliy N SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P SPENCER, John W KRAMER, David D DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
-
Patent number: 10454036Abstract: The present invention relates to a polymeric charge transfer layer comprising a polymer and a p-dopant. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device, especially an organic light emitting device containing the polymeric charge transfer layer.Type: GrantFiled: January 8, 2015Date of Patent: October 22, 2019Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials Korea Ltd., Rohm and Haas Electronic Materials LLCInventors: Liam P. Spencer, Hong-Yeop Na, Yoo-Jin Doh, Chun Liu, Minrong Zhu, Jichang Feng, Zhengming Tang, Shaoguang Feng, Kenneth L. Kearns, Jr., Timothy De Vries, Sukrit Mukhopadhyay, John W. Kramer, Peter Trefonas, III, David D. Devore, William H. H. Woodward
-
Publication number: 20190252618Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R24Type: ApplicationFiled: October 20, 2017Publication date: August 15, 2019Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
-
Publication number: 20190202975Abstract: A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer resin having Mw at least 3,000 and having arylmethoxy linkages; (b) an acid catalyst which is an organic Bronsted acid with pKa?4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF3, (ii) BF4?, (iii) PF6?, (iv) SbF6?, (v) AsF6? or (vi) ClO4?; or a thermal acid generator.Type: ApplicationFiled: June 28, 2016Publication date: July 4, 2019Inventors: Chun LIU, Robert David GRIGG, Sukrit MUKHOPADHYAY, Matthew S. REMY, Liam P. SPENCER, Minrong ZHU, Yang LI, Shaoguang FENG, Kenneth L. KEARNS, Bruce M. BELL, Anthony P. GIES, Peter TREFONAS, David D. DEVORE, Emad AQAD, Ashley INMAN
-
Publication number: 20190207115Abstract: A polymer which has Mn at least 4,000 and comprises polymerized units of a compound of formula NAr1A2A3, wherein Ar1, Ar2 and Ar3 independently are C6-C40 aromatic substituents; Ar1, Ar2 and Ar3 collectively contain no more than one nitrogen atom and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring.Type: ApplicationFiled: June 28, 2016Publication date: July 4, 2019Inventors: Robert David GRIGG, Liam P. Spencer, John W. Kramer, Chun Liu, David D. Devore, Shaoguang Feng, Jichang Feng, Minrong Zhu, Yang Li, Sukrit Mukhopadhyay, Anatoliy N. Sokolov, Matthew S. Remy, Peter Trefonas, Bethany Neilson
-
Publication number: 20190207169Abstract: A method for producing an organic charge transporting film. The method comprises steps of: (a) applying to a substrate a first polymer resin which has substituents which are sulfonic acids, sulfonic acid salts or esters of sulfonic acids; and (b) applying over the first polymer resin a second polymer resin having Mw at least 3,000 and comprising arylmethoxy linkages.Type: ApplicationFiled: June 28, 2016Publication date: July 4, 2019Inventors: Chun LIU, Peter TREFONAS, Shaoguang FENG, Yang LI, Minrong ZHU, Robert David GRIGG, Liam P. SPENCER, David D. DEVORE, Ashley INMAN, Emad AQAD
-
Publication number: 20190198765Abstract: A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer having Mn at least 4,000 and comprising polymerized units of a compound of formula NAr1Ar2Ar3, wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring; provided that said compound contains no arylmethoxy linkages; (b) an acid catalyst which is is an organic Bronsted acid with pKa?4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF3, (ii) BF4?, (iii) PF6?, (iv) SbF6?, (v) AsF6? or (vi) ClO4?; or a thermal acid generator.Type: ApplicationFiled: June 28, 2016Publication date: June 27, 2019Inventors: David D. DEVORE, Yoo Jin DOH, Shaoguang FENG, David D. GRIGG, Yang LI, Chun LIU, Sukrit MUKHOPADHYAY, Hong-Yeop NA, Matthew S. REMY, Liam P. SPENCER, Anatoliy N. SOKOLOV, Peter TREFONAS, III, Minrong ZHU, Ashely INMAN, John W. KRAMER
-
Patent number: 10301412Abstract: The invention provides a molecular transition metal complex selected from Formula 1, as described herein; an ethylene-based polymer; and a process to form the ethylene-based polymer, said process comprising polymerizing ethylene in the presence of at least one molecular transition metal complex selected from Formula 1, as described herein, and wherein either Z1 or Z2 is dative covalent (coordinate) to the metal (M).Type: GrantFiled: December 2, 2015Date of Patent: May 28, 2019Assignee: Dow Global Technologies LLCInventors: Jerzy Klosin, Endre Szuromi, Liam P. Spencer
-
Patent number: 10297755Abstract: The invention provides compositions comprising BCB-functionalized materials for use in OLEDs applications. The inventive compositions can be used to form hole-transporting materials for use in electroluminescent devices. In particular, the invention provides for compositions, charge transport film layers, and light emitting devices, comprising, or formed from, a polymer, which comprises one or more polymerized units derived from Structure (A).Type: GrantFiled: August 19, 2015Date of Patent: May 21, 2019Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials LLCInventors: Liam P. Spencer, Nolan T. McDougal, Peter Trefonas, III, David D. Devore