Patents by Inventor Liam Pedersen
Liam Pedersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11231287Abstract: An autonomous vehicle service system having a display device, a receiver, and a controller. The receiver is configured to receive transmitted data from an autonomous vehicle related to status of the autonomous vehicle and information from a third party related to road conditions. The controller is programmed to monitor the transmitted data related to the status of the autonomous vehicle and the road conditions, determine when the autonomous vehicle requires assistance based on the transmitted data, and, when the autonomous vehicle requires assistance, cause information related to the autonomous vehicle to be displayed on the display device.Type: GrantFiled: December 22, 2017Date of Patent: January 25, 2022Assignees: NISSAN NORTH AMERICA, INC., United States of America as Represented by the Administrator of the National Aeronautics and SpaceInventors: Liam Pedersen, Siddharth Thakur, Armelle Guerin, Ali Mortazavi, Atsuhide Kobashi, Mauro Della Penna, Richard Enlow, Andrea Angquist, Richard Salloum, Stephen Wu, Ben Christel, Shane Hogan, John Deniston, Jen Hamon, Sannidhi Jalukar, Maarten Sierhuis, Eric Schafer, David Lees, Dawn Wheeler, Mark Allan
-
Publication number: 20220018666Abstract: An autonomous vehicle service system having a display device, a receiver, and a controller. The receiver is remote from an autonomous vehicle and configured to receive transmitted data from a third party and the autonomous vehicle. The controller is configured to monitor the transmitted data related to the status of the autonomous vehicle, and cause information related to the autonomous vehicle to be displayed on the display device, the controller further configured to enable the autonomous vehicle service system to be accessed by the third party so as to be capable of forming and updating a supervision zone to restrict access to an area by the autonomous vehicle.Type: ApplicationFiled: September 30, 2021Publication date: January 20, 2022Inventors: Liam PEDERSEN, Siddharth THAKUR, Armelle GUERIN, Ali MORTAZAVI, Atsuhide KOBASHI, Mauro DELLA PENNA, Richard ENLOW, Andrea ANGQUIST, Richard SALLOUM, Stephen WU, Ben CHRISTEL, Shane HOGAN, John DENISTON, Jen HAMON, Sannidhi JALUKAR, Maarten SIERHUIS, Eric SCHAFER, David LEES, Dawn WHEELER, Mark ALLAN
-
Patent number: 11113973Abstract: Autonomous vehicle operational management including blocking monitoring may include traversing, by an autonomous vehicle, a vehicle transportation network. Traversing the vehicle transportation network may include operating a blocking monitor instance, which may include identifying operational environment information including information corresponding to a first external object within a defined distance of the autonomous vehicle, determining a first area of the vehicle transportation network based on a current geospatial location of the autonomous vehicle in the vehicle transportation network and an identified route for the autonomous vehicle, and determining a probability of availability for the first area based on the operational environment information. Traversing the vehicle transportation network may include traversing a portion of the vehicle transportation network based on the probability of availability.Type: GrantFiled: February 10, 2017Date of Patent: September 7, 2021Assignees: Nissan North America, Inc., The University of MassachusettsInventors: Kyle Wray, Stefan Witwicki, Shlomo Zilberstein, Liam Pedersen
-
Patent number: 11040729Abstract: A method for world objects tracking and prediction by an autonomous vehicle includes receiving, from sensors of the AV, a first observation data; associating the first observation data with a first world object; determining hypotheses for the first world object; determining a respective hypothesis likelihood of each of the hypotheses indicating a likelihood that the first world object follows the intention; determining, for at least one hypothesis of the hypotheses, a respective state; and in response to a query, providing a hypothesis of the hypotheses based on the respective hypothesis likelihood of each of the hypotheses. A hypothesis corresponds to an intention of the first world object and the respective state includes predicted positions of the first world object.Type: GrantFiled: May 31, 2018Date of Patent: June 22, 2021Assignee: Nissan North America, Inc.Inventors: Yue Zhao, Christopher Ostafew, Ali Mortazavi, Liam Pedersen
-
Patent number: 11016485Abstract: Exception handing, such as of obstruction situations, by an autonomous vehicle (AV) is disclosed. A method includes identifying an exception situation; identifying a risk associated with autonomously resolving the exception situation; and in response to the risk exceeding a risk threshold, initiating a request for assistance from a tele-operator, and halting for the tele-operator to respond to the request; and receiving a response from the tele-operator.Type: GrantFiled: March 28, 2019Date of Patent: May 25, 2021Assignees: Nissan North America, Inc., Renault S.A.S.Inventors: Liam Pedersen, Ali Mortazavi, Stefan Witwicki, Christopher Ostafew
-
Patent number: 10994748Abstract: According to some implementations of the present disclosure, a method for controlling an autonomous vehicle is disclosed. The method includes traversing the transportation network in accordance with a route and receiving vehicle sensor data from one or more vehicle sensors of the autonomous vehicle. The method also includes determining that the autonomous vehicle has encountered an occlusion scenario based on the vehicle sensor data. In response to determining that the autonomous vehicle has encountered the occlusion scenario, the method includes transmitting a request for infrastructure data to an external resource via a communication network, receiving infrastructure data from the external resource, determining a control action for the autonomous vehicle to perform based on the infrastructure data and the vehicle sensor data, and controlling the autonomous vehicle based on the control action.Type: GrantFiled: February 28, 2018Date of Patent: May 4, 2021Assignees: Nissan North America, Inc., Renault S.A.S.Inventors: Ali Mortazavi, Maarten Sierhuis, Liam Pedersen
-
Publication number: 20210125500Abstract: Batch routing of autonomous vehicles is disclosed. A method may include maintaining a plurality of vehicle state data object instances that respectively correspond to a plurality of autonomous vehicles. The method includes obtaining a traffic condition location and determining a group of autonomous vehicles from the plurality of autonomous vehicles where the current route of each autonomous vehicle intersects the traffic condition location. The method also includes determining two or more subgroups of autonomous In vehicles, and for each subgroup, determining a respective avoidance waypoint corresponding to the subgroup that is not on the current route of the autonomous vehicle. For each autonomous vehicle in the subgroup, the method includes determining an updated route based on the current route of the autonomous vehicle and the respective avoidance waypoint, generating a control instruction based on the updated route, and transmitting the control instruction to the autonomous vehicle.Type: ApplicationFiled: January 31, 2018Publication date: April 29, 2021Inventors: Ali Mortazavi, Liam Pedersen, Maarten Sierhuis
-
Publication number: 20210086795Abstract: World objects tracking and prediction by an autonomous vehicle is disclosed. A method includes receiving, from sensors of the AV, a first observation data; associating the first observation data with a first world object; determining hypotheses for the first world object, wherein a hypothesis corresponds to an intention of the first world object; determining a respective hypothesis likelihood of each of the hypotheses indicating a likelihood that the first world object follows the intention; determining, for at least one hypothesis of the hypotheses, a respective state, wherein the respective state comprises predicted positions of the first world object; and in response to a query, providing a hypothesis of the hypotheses based on the respective hypothesis likelihood of each of the hypotheses.Type: ApplicationFiled: May 31, 2018Publication date: March 25, 2021Inventors: Yue Zhao, Christopher Ostafew, Ali Mortazavi, Liam Pedersen
-
Publication number: 20210072756Abstract: Methods and systems for generating a solution path overlay interface to transmit a solution path are described. A method comprises receiving data from a vehicle control system of a vehicle, the data including a movement path for each of a plurality of external objects; generating a solution path overlay interface that includes an indicator for the vehicle, an indicator for one or more of the plurality of external objects and an indicator for a solution path; in response to detecting a change associated with a movement path of the one or more of the plurality of external objects, receiving a command from an operator of the solution path overlay interface, the command including an indication of one or more stop points; updating the solution path overlay interface based on the command to provide an updated solution path; and transmitting the updated solution path to the vehicle for execution.Type: ApplicationFiled: November 3, 2020Publication date: March 11, 2021Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
-
Patent number: 10935973Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for generating solution data for autonomous vehicles to negotiate problem situations have been disclosed. The disclosed technology generates state data associated with a vehicle using sensor data received from the vehicle and from external objects within a vicinity of the vehicle. The state data includes any of a location of the vehicle, a destination of the vehicle, an operational status of the vehicle, and information associated with a vehicle environment. In response to determining that the state data satisfies a state criterion, a determination of solution profile data that matches the state data is made on the basis of a comparison of the state data to the solution profile data. Solution data is generated using the matching solution profile data to transmit the solution data to the vehicle for execution.Type: GrantFiled: December 6, 2017Date of Patent: March 2, 2021Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASAInventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
-
Publication number: 20210031760Abstract: A method for contingency planning for an autonomous vehicle (AV) includes determining a nominal trajectory for the AV; detecting a hazard object that does not intrude into a path of the AV at a time of the detecting the hazard object; determining a hazard zone for the hazard object; determining a time of arrival of the AV at the hazard zone; determining a contingency trajectory for the AV; controlling the AV according to the contingency trajectory; and, in response to the hazard object intruding into the path of the AV, controlling the AV to perform a maneuver to avoid the hazard object. The contingency trajectory includes at least one of a lateral contingency or a longitudinal contingency. The contingency trajectory is determined using the time of arrival of the AV at the hazard zone.Type: ApplicationFiled: July 31, 2019Publication date: February 4, 2021Inventors: Christopher Ostafew, Therese Cypher-Plissart, Qizhan Tam, Atsuhide Kobashi, Liam Pedersen
-
Patent number: 10890915Abstract: Methods and systems for generating a solution path overlay interface to transmit a solution path are described. The disclosed technology includes receiving vehicle data and external data from a vehicle. The vehicle data includes a vehicle location and a vehicle destination, and the external data includes a location and a movement path for each of a plurality of external objects. A solution path is determined between the vehicle location and the vehicle destination, wherein the solution path does not intersect with the plurality of external objects. A solution path overlay interface is generated that includes the vehicle traveling the solution path and at least some of the plurality of external objects. The solution path overlay interface is outputted for display that is configured to receive a command from an operator which results in an updated solution path that is transmitted to the vehicle for execution.Type: GrantFiled: December 6, 2017Date of Patent: January 12, 2021Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASAInventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
-
Publication number: 20210001882Abstract: According to some implementations of the present disclosure, a method for controlling an autonomous vehicle is disclosed. The method includes traversing the transportation network in accordance with a route and receiving vehicle sensor data from one or more vehicle sensors of the autonomous vehicle. The method also includes determining that the autonomous vehicle has encountered an occlusion scenario based on the vehicle sensor data. In response to determining that the autonomous vehicle has encountered the occlusion scenario, the method includes transmitting a request for infrastructure data to an external resource via a communication network, receiving infrastructure data from the external resource, determining a control action for the autonomous vehicle to perform based on the infrastructure data and the vehicle sensor data, and controlling the autonomous vehicle based on the control action.Type: ApplicationFiled: February 28, 2018Publication date: January 7, 2021Inventors: Ali Mortazavi, Maarten Sierhuis, Liam Pedersen
-
Patent number: 10839473Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for monitoring vehicles including autonomous vehicles are described. The disclosed technology includes a vehicle monitoring system that receives vehicle data and external data associated with a vehicle and a corresponding predetermined area. The vehicle data includes a vehicle state of the vehicle and the external data includes external states of external objects. An issue type of the vehicle is determined based on the vehicle state and at least one of the external states. An indication of the issue type is generated for display on an interface.Type: GrantFiled: November 30, 2017Date of Patent: November 17, 2020Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
-
Publication number: 20200310417Abstract: Exception handing, such as of obstruction situations, by an autonomous vehicle (AV) is disclosed. A method includes identifying an exception situation; identifying a risk associated with autonomously resolving the exception situation; and in response to the risk exceeding a risk threshold, initiating a request for assistance from a tele-operator, and halting for the tele-operator to respond to the request; and receiving a response from the tele-operator.Type: ApplicationFiled: March 28, 2019Publication date: October 1, 2020Inventors: Liam Pedersen, Ali Mortazavi, Stefan Witwicki, Christopher Ostafew
-
Publication number: 20200293065Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. A system comprises a memory and a processor configured to execute instructions stored in the memory to: assign vehicles to support queues based on state data, generate a map display including locations of the vehicles, and generate a state display including the support queues, vehicle manager indicators corresponding to the support queues and state indicators corresponding to the state data.Type: ApplicationFiled: June 2, 2020Publication date: September 17, 2020Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer
-
Publication number: 20200269877Abstract: Methods and systems for controlling a vehicle are herein disclosed. A method includes receiving vehicle data and external data from a vehicle control system of a vehicle and generating an environment representation of an area of the transportation network proximate to the vehicle location. The method includes displaying the environment representation in a GUI and receiving a solution path via the graphical user interface, the solution path indicating a route and one or more stop points. The method includes transmitting the route to the vehicle including a respective geolocation of each of the one or more stop points. The vehicle receives the route and begins traversing the transportation network based on the solution path. The method includes receiving updated vehicle data and/or updated external data from the vehicle and updating the environment representation based thereon. The method includes displaying, the updated environment representation via the graphical user interface.Type: ApplicationFiled: December 22, 2017Publication date: August 27, 2020Inventors: Ali Mortazavi, Atsuhide Kobashi, Liam Pedersen
-
Publication number: 20200269875Abstract: Autonomous vehicle operational management may include traversing, by an autonomous vehicle, a vehicle transportation network. Traversing the vehicle transportation network may include generating an autonomous vehicle operational control environment for operating scenario-specific operational control evaluation module instances. A scenario-specific operational control evaluation module instance may be an instance of a respective scenario-specific operational control evaluation module. A scenario-specific operational control evaluation module may model a respective distinct vehicle operational scenario. A scenario-specific operational control evaluation module instance may generate a respective candidate vehicle control action responsive to the respective corresponding distinct vehicle operational scenario.Type: ApplicationFiled: February 10, 2017Publication date: August 27, 2020Inventors: Kyle Wray, Stefan Witwicki, Shlomo Zilberstein, Liam Pedersen
-
Publication number: 20200218255Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.Type: ApplicationFiled: March 16, 2020Publication date: July 9, 2020Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
-
Patent number: 10705539Abstract: Methods and systems for providing remote support and negotiating problem situations of autonomous operation of vehicles based on signal states and vehicle information are described. The disclosed technology receives state data for the vehicles by an apparatus such as a remote vehicle support apparatus. The state data indicates a respective current state for the vehicles. The vehicles are each assigned to respective remote vehicle support queues based on the respective state data. An indication that one of the vehicles is requesting remote support is received by the remote vehicle support apparatus. In response to a determination that a change in the state data indicates that autonomous operation of the one of the vehicles is operating outside of defined parameter values, the remote support is provided to the one of the vehicles through a communications link by transmitting instruction data to modify the autonomous operation of the one of the vehicles.Type: GrantFiled: November 30, 2017Date of Patent: July 7, 2020Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASAInventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Terrence Fong, Mark Allan, Maria Bualat, Eric Schafer