Patents by Inventor Lian-Shin Lin

Lian-Shin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795070
    Abstract: This invention provides processes for treating a mixture of produced water and blowdown water comprising introducing produced water (PW) into blowdown water (BD) for forming a PW-BD water mixture, softening the PW-BD water mixture, subjecting the PW-BD water mixture to activated carbon filtration and reverse osmosis membrane desalination. The process generates a product water and a brine by-product.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: October 24, 2023
    Assignee: West Virginia University Board of Governors on behalf of West Virginia University
    Inventor: Lian-Shin Lin
  • Publication number: 20220332615
    Abstract: A method for treating wastewater comprising subjecting a sulfate containing wastewater to Fe(III) iron dosing in an anaerobic bioreactor containing one or more of an iron reducing bacteria and one or more of a sulfate reducing bacteria, and one or more of a fermentative bacteria, and adjusting a dosage of the Fe(III) iron in the anaerobic bioreactor to achieve a Fe/Sulfate molar ratio that is equal to or greater than 0.50, and removing an effluent from the anaerobic bioreactor that is a treated wastewater. A wastewater treatment system is provided having a wastewater reservoir, a ferric iron solution reservoir, an anaerobic bioreactor, and an effluent reservoir.
    Type: Application
    Filed: September 24, 2020
    Publication date: October 20, 2022
    Inventor: Lian-Shin Lin
  • Publication number: 20220135443
    Abstract: This invention provides processes for treating a mixture of produced water and blowdown water comprising introducing produced water (PW) into blowdown water (BD) for forming a PW-BD water mixture, softening the PW-BD water mixture, subjecting the PW-BD water mixture to activated carbon filtration and reverse osmosis membrane desalination. The process generates a product water and a brine by-product.
    Type: Application
    Filed: September 17, 2021
    Publication date: May 5, 2022
    Inventor: Lian-Shin Lin
  • Patent number: 7842512
    Abstract: A method for photochemical reactor characterization includes an application of using dyed microspheres exposed to UV irradiation under a collimated-beam system. Particle specific fluorescence intensity measurements are conducted using samples form the collimated beam and flow-through reactor results using flow cytometry. A numerical model may be used to simulate the behavior of the reactor system to provide a particle-tracking algorithm to interrogate the flow and intensity field simulations for purposes of developing a particle specific estimate of the dose delivery. A method for measuring UV dose distribution delivery in photochemical reactors is provided that includes introducing microspheres labeled with a photochemically-active compound in a UV reactor. The labeled microspheres are harvested downstream of the irradiated zone of a UV reactor and exposed to UV irradiation under a collimated beam of UV irradiation.
    Type: Grant
    Filed: March 26, 2005
    Date of Patent: November 30, 2010
    Assignee: Purdue Research Foundation
    Inventors: Ernest R. Blatchley, III, Chengyue Shen, Zorana Naunovic, Lian-Shin Lin, Dennis A. Lyn, Donald E. Bergstrom, Shiyue Fang, Yousheng Guan, Joseph Paul Robinson, Kathyrn E. Ragheb, Gerald J. Gregori
  • Publication number: 20060017008
    Abstract: A method for photochemical reactor characterization includes an application of using dyed microspheres exposed to UV irradiation under a collimated-beam system. Particle specific fluorescence intensity measurements are conducted using samples form the collimated beam and flow-through reactor results using flow cytometry. A numerical model may be used to simulate the behavior of the reactor system to provide a particle-tracking algorithm to interrogate the flow and intensity field simulations for purposes of developing a particle specific estimate of the dose delivery. A method for measuring UV dose distribution delivery in photochemical reactors is provided that includes introducing microspheres labeled with a photochemically-active compound in a UV reactor, The labeled microspheres are harvested downstream of the irradiated zone of a UV reactor and exposed to UV irradiation under a collimated beam of UV irradiation.
    Type: Application
    Filed: March 26, 2005
    Publication date: January 26, 2006
    Inventors: Ernest Blatchley, Chengyue Shen, Zorana Naunovic, Lian-Shin Lin, Dennis Lyn, Donald Bergstrom, Shiyue Fang, Yousheng Guan, Joseph Robinson, Kathyrn Ragheb, Gerald Gregori