Patents by Inventor Liang-Shih Fan

Liang-Shih Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8877147
    Abstract: A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 4, 2014
    Assignee: The Ohio State University
    Inventors: Liang-shih Fan, Fanxing Li
  • Patent number: 8877150
    Abstract: A method for the removal of CO2, SOx and NOx in a single-step process is described herein. A gas mixture is directed to a carbonator. A carbonaceous material and calcium sorbent is then injected into the carbonator to remove the CO2, SOx and NOx. A calciner is provided to regenerate the calcium sorbent. The unreacted carbonaceous material is used to fuel the calciner.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 4, 2014
    Inventors: Liang-Shih Fan, Niranjani Deshpande, Nihar Phalek
  • Publication number: 20140295361
    Abstract: In accordance with one embodiment of the present disclosure, an oxygen carrying material may include a primary active mass, a primary support material, and a secondary support material. The oxygen carrying material may include about 20% to about 70% by weight of the primary active mass, the primary active mass including a composition having a metal or metal oxide selected from the group consisting of Fe, Co, Ni, Cu, Mo, Mn, Sn, Ru, Rh, and combinations thereof. The oxygen carrying material may include about 5% to about 70% by weight of a primary support material. The oxygen carrying material may include about 1% to about 35% by mass of a secondary support material.
    Type: Application
    Filed: May 11, 2012
    Publication date: October 2, 2014
    Applicant: Ohio State Innovation Foundation
    Inventors: Liang-Shih Fan, Deepak Sridhar, Fanxing Li
  • Publication number: 20140158939
    Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.
    Type: Application
    Filed: May 13, 2013
    Publication date: June 12, 2014
    Applicant: The Ohio State University Research Foundation
    Inventors: Shwetha Ramkumar, Liang-Shih Fan
  • Publication number: 20140144082
    Abstract: A method for converting fuel may include reducing at least one metal oxide in a first reactor with a fuel to produce a reduced metal or a reduced metal oxide, transporting the reduced metal or reduced metal oxide from the first reactor to a second reactor, oxidizing at least a portion of the reduced metal or reduced metal oxide from the first reactor in the second reactor to produce a metal oxide intermediate, transporting the metal oxide intermediate from the second reactor to a third reactor, removing ash, char, or unwanted materials with a separation unit from the metal oxide intermediate transported from the second reactor to the third reactor, regenerating the at least one metal oxide, and transporting the regenerated metal oxide from the third reactor to the first reactor.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Applicant: The Ohio State University
    Inventors: Liang-Shih Fan, Puneet Gupta, Luis Gilberto Velazquez Vargas, Fanxing Li
  • Publication number: 20140072917
    Abstract: A system for converting fuel may include a first moving bed reactor, a second reactor, and a non-mechanical valve. The first moving bed reactor may include at least one tapered section and multiple injection gas ports. The multiple injection gas ports may be configured to deliver a fuel to the first moving bed reactor. The first moving bed reactor may be configured to reduce an oxygen carrying material with a fuel by defining a countercurrent flowpath for the fuel relative to the oxygen carrying material. The second reactor may communicate with the first moving bed reactor and may be operable to receive an oxygen source. The second reactor may be configured to regenerate the reduced oxygen carrying material by oxidation.
    Type: Application
    Filed: May 11, 2012
    Publication date: March 13, 2014
    Applicant: OHIO STATE INNOVATION FOUNDATION
    Inventors: Liang-Shih Fan, Hyung R. Kim, Fanxing Li, Liang Zeng, Dawei Wang, Fei Wang
  • Publication number: 20140034134
    Abstract: A system and process for carrying out one or more chemical reactions are provided and include one or more chemical reactors having particulate solids forming a bed therein, and a gas stripping zone forming a non-mechanical seal between said reactors which includes a conduit connecting the reactors. The conduit includes an inlet for a stripping gas which is adapted to prevent process gas from passing between reactors while permitting particulate solids to pass between reactors.
    Type: Application
    Filed: November 8, 2011
    Publication date: February 6, 2014
    Applicant: The Ohio State University
    Inventors: Liang-Shih Fan, Fanxing Li, Fei Wang, Andrew S. Tong, Surya B.R. Karri, John G. Findlay, Ted M. Knowlton, Raymond A. Cocco
  • Patent number: 8614707
    Abstract: Dynamic three-dimensional image electrical capacitance tomography sensor system is disclosed. The technique generates, from the measured capacitance, a whole volume image of the region enclosed by the a geometrically three-dimensional capacitance sensor. A real time, three-dimensional imaging of a moving object or a real time volume imaging (i.e., four-dimensional (4D)) allows for a total interrogation scheme of the whole volume within the domain of an arbitrary shape of geometry to be implemented. The system comprises a 3D capacitance sensor, data acquisition electronics and the image reconstruction algorithm which enables the volume-image reconstruction. The electrode shape of the capacitance sensor can be rectangular, triangular, trapezium, or any shape to enclose a 3D section of the measuring domain and to distribute the electrical field intensity in three directions with equal sensitivity strength.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: December 24, 2013
    Assignee: The Ohio State University
    Inventors: Warsito Warsito, Qussai Marashdeh, Liang-Shih Fan
  • Patent number: 8512661
    Abstract: A process for the efficient capture of CO2 and sulfur from combustion flue gas streams and gasification based fuel gas mixtures using regenerable and recyclable calcium based sorbents. The regeneration of the calcium sorbent is accomplished by hydrating the sorbent at high temperatures of about 600° C. and a pressure higher than 6 bars to lower the parasitic energy consumption.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 20, 2013
    Assignee: The Ohio State University Research Foundation
    Inventors: Liang-Shih Fan, Shwetha Ramkumar, William Wang, Robert Statnick
  • Patent number: 8501105
    Abstract: A reaction-based process developed for the selective removal of CO2 from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 (CaRS-CO2) process consists of contacting CO2 laden gas with CaO in a reactor such that CaO captures CO2 by the formation of CaCO3. CaCO3 is regenerated by calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of CO2. This carbonation-calcination cycle forms the basis of the CaRS-CO2 process. This process also may use a mesoporous CaCO3 structure that attains >90% conversion over multiple carbonation and calcination cycles.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 6, 2013
    Assignee: The Ohio State University
    Inventors: Liang-Shih Fan, Himanshu Gupta, Mahesh V. Iyer
  • Patent number: 8496909
    Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: July 30, 2013
    Assignee: The Ohio State University Research Foundation
    Inventors: Shwetha Ramkumar, Liang-Shih Fan
  • Publication number: 20130078159
    Abstract: A reaction-based process developed for the selective removal of CO2 from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 (CaRS-CO2) process consists of contacting CO2 laden gas with CaO in a reactor such that CaO captures CO2 by the formation of CaCO3. CaCO3 is regenerated by calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of CO2. This carbonation-calcination cycle forms the basis of the CaRS-CO2 process. This process also may use a mesoporous CaCO3 structure that attains >90% conversion over multiple carbonation and calcination cycles.
    Type: Application
    Filed: July 20, 2012
    Publication date: March 28, 2013
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Liang-Shih Fan, Himanshu Gupta, Mahesh V. Iyer
  • Publication number: 20120225007
    Abstract: Methods and systems for sequestering carbon dioxide and generating hydrogen are disclosed. In some embodiments, the methods include the following: dissolving an iron based material that includes a carbonate-forming element into a solution including the carbonate-forming element and iron; increasing a pH of the solution to cause precipitation of iron oxide from the solution thereby generating a first source of Fe2O3; reacting the carbonate-forming element in the solution with a first source of carbon dioxide to produce a carbonate thereby sequestering the carbon dioxide; oxidizing the first source of Fe2O3 with a carbonaceous fuel thereby generating a second source of carbon dioxide and iron; and oxidizing the iron with steam thereby generating hydrogen and an iron oxide. Some embodiments include producing iron-based catalysts.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 6, 2012
    Inventors: Ah-Hyung Alissa Park, Liang-Shih Fan, Hyung Ray Kim
  • Patent number: 8226917
    Abstract: A reaction-based process has been developed for the selective removal of carbon dioxide (CO2) from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration in the stream. The proposed process effects the separation of CO2 from a mixture of gases (such as flue gas/fuel gas) by its reaction with metal oxides (such as calcium oxide). The Calcium based Reaction Separation for CO2 (CaRS—CO2) process consists of contacting a CO2 laden gas with calcium oxide (CaO) in a reactor such that CaO captures the CO2 by the formation of calcium carbonate (CaCOa). Once “spent”, CaCO3 is regenerated by its calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of more CO2. This carbonation-calcination cycle forms the basis of the CaRS—CO2 process.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: July 24, 2012
    Assignee: The Ohio State University
    Inventors: Liang-Shih Fan, Himanshu Gupta, Mahesh V. Iyer
  • Publication number: 20120171588
    Abstract: High efficiency electricity generation processes and systems with substantially zero CO2 emissions are provided. A closed looping between the unit that generates gaseous fuel (H2, CO, etc) and the fuel cell anode side is formed. In certain embodiments, the heat and exhaust oxygen containing gas from the fuel cell cathode side are also utilized for the gaseous fuel generation. The systems for converting fuel may comprise reactors configured to conduct oxidation-reduction reactions. The resulting power generation efficiencies are improved due to the minimized steam consumption for the gaseous fuel production in the fuel cell anode loop as well as the strategic mass and energy integration schemes.
    Type: Application
    Filed: September 8, 2010
    Publication date: July 5, 2012
    Applicant: The Ohio State University Research Foundation
    Inventors: Liang-Shih Fan, Fanxing Li, Liang Zeng, Deepak Sridhar
  • Publication number: 20120159841
    Abstract: Novel redox based systems for fuel and chemical production with in-situ CO2 capture are provided. A redox system using one or more chemical intermediates is utilized in conjunction with liquid fuel generation via indirect Fischer-Tropsch synthesis, direct hydro genation, or pyrolysis. The redox system is used to generate a hydrogen rich stream and/or CO2 and/or heat for liquid fuel and chemical production. A portion of the byproduct fuels and/or steam from liquid fuel and chemical synthesis is used as part of the feedstock for the redox system.
    Type: Application
    Filed: September 8, 2010
    Publication date: June 28, 2012
    Applicant: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Liang-Shih Fan, Fanxing Li, Liang Zeng
  • Publication number: 20110286902
    Abstract: A process for the efficient capture of CO2 and sulfur from combustion flue gas streams and gasification based fuel gas mixtures using regenerable and recyclable calcium based sorbents. The regeneration of the calcium sorbent is accomplished by hydrating the sorbent at high temperatures of about 600° C. and a pressure higher than 6 bars to lower the parasitic energy consumption.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicant: The Ohio State University Research Foundation
    Inventors: Liang-Shih Fan, Shwetha Ramkumar, William Wang, Robert Statnick
  • Publication number: 20110200520
    Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.
    Type: Application
    Filed: October 13, 2009
    Publication date: August 18, 2011
    Applicant: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shwetha Ramkumar, Liang-Shih Fan
  • Publication number: 20110176968
    Abstract: A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
    Type: Application
    Filed: September 28, 2009
    Publication date: July 21, 2011
    Inventors: Liang-Shih Fan, Li Fanxing
  • Patent number: 7837975
    Abstract: A process for producing hydrogen, comprising the steps of: (a) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam and sulfur and halide contaminants in the form of H2S, COS and HX, where X is a halide; (b) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (c) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (d) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof. The CaO may have a surface area of at least 12.0 m2/g and a pore volume of at least 0.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: November 23, 2010
    Assignee: The Ohio State University
    Inventors: Mahesh V. Iyer, Liang-Shih Fan, Shwetha Ramkumar