Patents by Inventor Liang-Yuh Chen

Liang-Yuh Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200070115
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventor: Liang-Yuh Chen
  • Patent number: 10576440
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: March 3, 2020
    Inventor: Liang-Yuh Chen
  • Patent number: 10507446
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 17, 2019
    Inventor: Liang-Yuh Chen
  • Publication number: 20180361338
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventor: Liang-Yuh Chen
  • Publication number: 20180358606
    Abstract: A system and method thereof are provided for multi-stage processing of one or more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: August 17, 2018
    Publication date: December 13, 2018
    Inventor: Liang-Yuh Chen
  • Patent number: 10076737
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: September 18, 2018
    Inventor: Liang-Yuh Chen
  • Publication number: 20180183036
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 28, 2018
    Inventor: Liang-Yuh Chen
  • Publication number: 20140328724
    Abstract: A system and method thereof are provided for multi-stage processing of one or more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Publication number: 20140327165
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously deliver the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: Liang-Yuh Chen
  • Publication number: 20140326918
    Abstract: A system and method thereof are provided for multi-stage processing of one more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Publication number: 20140328729
    Abstract: A continuous process for producing a material of a battery cell using a system having a mist generator, a drying chamber, one or more gas-solid separators and a reactor is provided. A mist generated from a liquid mixture of two or more metal precursor compounds in desired ratio is dried inside the drying chamber. Heated air or gas is served as the gas source for forming various gas-solid mixtures and as the energy source for any reactions inside the drying chamber and the reactor. One or more gas-solid separators are used in the system to separate gas-solid mixtures from the drying chamber into solid particles mixed with the metal precursor compounds and continuously feed the solid particles into the reactor for further reaction to obtain final solid material particles with desired crystal structure, particle size, and morphology.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Patent number: 8449950
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8399065
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8216379
    Abstract: A substrate holder comprises a generally circular planar body, the body having greater than or equal to two pairs of diametrically opposed, parallel flat edges, and wherein the substrate holder is configured to fit on a generally circular susceptor within a processing chamber. In some embodiments the substrate holder has four pairs of diametrically opposed, parallel flat edges, whereby the substrate holder is substantially octagonal. Furthermore, in some embodiments the substrate holder covers less than eighty percent of the susceptor area. A method of processing a substrate using the substrate holder includes: loading the substrate into a recess in the substrate holder; transferring the substrate holder through a loadlock into the processing chamber, the substrate holder being presented with a smallest cross-section aligned for passage through the loadlock; placing the substrate holder on the susceptor; and processing the substrate. The substrate holder may carry a plurality of substrates.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Liang-Yuh Chen
  • Publication number: 20120118225
    Abstract: Apparatus and method for control of epitaxial growth temperatures during manufacture of light emitting diodes (LEDs). Embodiments include measurement of a substrate and/or carrier temperature during a recipe stabilization period; determination of a temperature drift based on the measurement; and modification of a growth temperature based on a temperature offset determined in response to the temperature drift exceeding a threshold criteria. In an embodiment, a statistic derived from a plurality of pyrometric measurements made during the recipe stabilization over several runs is employed to offset each of a set of growth temperatures utilized to form a multiple quantum well (MQW) structure.
    Type: Application
    Filed: September 13, 2011
    Publication date: May 17, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Wei-Yung HSU, Alain DUBOUST, Hua CHUNG, Liang-Yuh CHEN, Donald J.K. OLGADO
  • Publication number: 20120083060
    Abstract: The integration of cluster metal-organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE) reactors with other process chambers is described. For example, a method of fabricating a light-emitting diode (LED) structure described herein includes forming, in a first chamber of a cluster tool, a P-type group III-V material layer above a substrate. Without removing the substrate from the cluster tool a metal contact layer is formed directly on the P-type group III-V material layer in a second chamber of the cluster tool.
    Type: Application
    Filed: September 27, 2011
    Publication date: April 5, 2012
    Inventors: Jie Cui, David Bour, Liang-Yuh Chen
  • Publication number: 20120052216
    Abstract: Embodiments of the present invention provide methods and apparatus for surface coatings applied to process chamber components utilized in chemical vapor deposition processes. In one embodiment, the apparatus provides a showerhead apparatus comprising a body, a plurality of conduits extending through the body, each of the plurality of conduits having an opening extending to a processing surface of the body, and a coating disposed on the processing surface, the coating being about 50 microns to about 200 microns thick and comprising a coefficient of emissivity of about 0.8, an average surface roughness of about 180 micro-inches to about 220 micro-inches, and a porosity of about 15% or less.
    Type: Application
    Filed: June 6, 2011
    Publication date: March 1, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hiroji Hanawa, Kyawwin Jason Maung, Hua Chung, Jie Cui, David Bour, Wei-Yung Hsu, Liang-Yuh Chen
  • Patent number: 8012000
    Abstract: A method and apparatus for extending a polishing article lifetime on a polishing tool with multiple platens is described. The apparatus includes an advanceable roll to roll platen with multiple embodiments of a polishing article to be used thereon. The polishing article is adapted to perform a polishing process by removing conductive and dielectric material from a substrate while minimizing downtime of the polishing tool. In some embodiments, the polishing article may be a dielectric material or a conductive material and is configured to include a longer usable lifetime to minimize replacement and downtime of the tool.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: September 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yuchun Wang, Robert A. Ewald, Wei-Yung Hsu, Liang-Yuh Chen
  • Patent number: 7993485
    Abstract: Apparatus and methods adapted to polish an edge of a substrate include a polishing film, a frame adapted to tension and load the polishing film so that at least a portion of the film is supported in a plane, and a substrate rotation driver adapted to rotate a substrate against the plane of the polishing film such that the polishing film is adapted to apply force to the substrate, contour to an edge of the substrate, the edge including at least an outer edge and a first bevel, and polish the outer edge and the first bevel as the substrate is rotated. Numerous other aspects are provided.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Erik C. Wasinger, Gary C. Ettinger, Sen-Hou Ko, Wei-Yung Hsu, Liang-Yuh Chen, Ho Seon Shin, Donald Olgado
  • Publication number: 20110053465
    Abstract: A method and apparatus for local polishing and deposition control in a process cell is generally provided. In one embodiment, an apparatus for electrochemically processing a substrate is provided that selectively polishes discrete conductive portions of a substrate by controlling an electrical bias profile across a processing area, thereby controlling processing rates between two or more conductive portions of the substrate.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 3, 2011
    Inventors: STAN TSAI, Feng Q. Liu, Yan Wang, Rashid Mavliev, Liang-Yuh Chen, Alain Duboust