Patents by Inventor Liangbing Hu

Liangbing Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240429439
    Abstract: A solid-state ion-conducting structure comprises a plurality of grains formed of a first material composition and a second material composition different from the first material composition. The second material composition can wet boundaries of the grains and/or fill voids between adjacent grains. Each of the material compositions can have an ionic conductivity greater than or equal to 10?4 S/cm. The second material composition may be considered a volatile sintering aid. for example. having a melting point less than a temperature at which the first material composition is sintered. In some embodiments, the solid-state ion-conducting structure can be used as a solid-state electrolyte in a battery.
    Type: Application
    Filed: September 30, 2022
    Publication date: December 26, 2024
    Inventors: Liangbing HU, Qi DONG, Min HONG
  • Patent number: 12168727
    Abstract: Highly transparent (up to 92% light transmittance) wood composites have been developed. The process of fabricating the transparent wood composites includes lignin removal followed by index-matching polymer infiltration resulted in fabrication of the transparent wood composites with preserved naturally aligned nanoscale fibers. The thickness of the transparent wood composite can be tailored by controlling the thickness of the initial wood substrate. The optical transmittance can be tailored by selecting infiltrating polymers with different refractive indices. The transparent wood composites have a range of applications in biodegradable electronics, optoelectronics, as well as structural and energy efficient building materials. By coating the transparent wood composite layer on the surface of GaAs thin film solar cell, an 18% enhancement in the overall energy conversion efficiency has been attained.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: December 17, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Mingwei Zhu, Tian Li, Amy S. Gong, Jianwei Song
  • Publication number: 20240409706
    Abstract: A reactant comprising one or more polymers can be subjected to multiple consecutive processing cycles. Each processing cycle can have a first period with heating applied and a second period immediately following the first period with no heating applied. A duration of each processing cycle can be less than or equal to 10 seconds, and a duration of each first period can be less than 1 second. The subjecting can be effective to convert at least some of the reactant into one or more products, for example, one or more constituent monomers or other volatile or gas-phase species. In some embodiments, a reactor can be provided between a heating source and the reactant, for example, to provide a spatio-temporal temperature profile for improved polymer processing.
    Type: Application
    Filed: October 4, 2022
    Publication date: December 12, 2024
    Inventors: Liangbing HU, Dongxia LIU, Qi DONG, Sichao CHENG, Yiguang JU
  • Patent number: 12157249
    Abstract: A flexible structure is formed by subjecting cellulose-based natural wood material to a chemical treatment that partially removes hemicellulose and lignin therefrom. The treated wood has a unique 3-D porous structure with numerous channels, excellent biodegradability and biocompatibility, and improved flexibility as compared to the natural wood. By further modifying the treated wood, the structure can be adapted to particular applications. For example, nanoparticles, nanowires, carbon nanotubes, or any other coating or material can be added to the treated wood to form a hybrid structure. In some embodiments, open lumina within the structure can be at least partially filled with a non-wood substance, such as a flexible polymer, or with entangled cellulose nanofibers.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: December 3, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Jianwei Song, Chaoji Chen, Amy Gong
  • Publication number: 20240390880
    Abstract: A catalytic structure has a substrate and a plurality of high-entropy alloy (HEA) nanoparticles. At least a surface layer of the substrate is formed of a metal oxide. The HEA nanoparticles can be formed on the surface layer. Each HEA nanoparticle can comprise a homogeneous mixture of at least four different elements forming a single-phase solid-solution alloy. The catalytic structures can be used to catalyze a chemical reaction, such as an ammonia oxidation reaction, an ammonia synthesis reaction, or an ammonia decomposition reaction.
    Type: Application
    Filed: September 23, 2022
    Publication date: November 28, 2024
    Inventors: Liangbing HU, Tangyuan LI, Robert GATTE, Chao WANG, Noah ZECHER-FREEMAN
  • Patent number: 12151231
    Abstract: A catalytic structure has a plurality of high-entropy alloy (HEA) nanoparticles. Each HEA nanoparticle is composed of a homogeneous mixture of elements of cobalt (Co), molybdenum (Mo), and at least two transition metal elements. For example, in some embodiments, each HEA nanoparticle is a quinary mixture of Co, Mo, iron (Fe), nickel (Ni), and copper (Cu). The homogeneous mixture in each HEA nanoparticle forms a single solid-solution phase. The catalytic structure is used to catalyze a chemical reaction, for example, ammonia decomposition or ammonia synthesis. Methods for forming the catalytic structure are also disclosed.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: November 26, 2024
    Assignees: University of Maryland, College Park, The Johns Hopkins University
    Inventors: Liangbing Hu, Chao Wang, Pengfei Xie, Yonggang Yao
  • Patent number: 12146711
    Abstract: A sintering furnace can have a housing, one or more heating elements, and a conveying assembly. Each heating element can be disposed within the housing and can subject a heating zone to a thermal shock temperature profile. A substrate with one or more precursors thereon can be moved by the conveying assembly through an inlet of the housing to the heating zone, where it is subjected to a first temperature of at least 500° C. for a first time period. The conveying assembly can then move the substrate with one or more sintered materials thereon from the heating zone and through an outlet of the housing.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: November 19, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Xizheng Wang, Xinpeng Zhao, Hua Xie
  • Publication number: 20240379936
    Abstract: Degraded electrode material from a used battery can be recycled by subjecting to a thermal shock. The degraded electrode material can have impurities resulting from charge/discharge cycling of the battery. The thermal shock can have a temperature of at least 1000 K for a time period of 10 seconds or less, for example, less than or equal to 1 second. The thermal shock can also include a heating rate of at least 103 K/second preceding the time period and a cooling rate of at least 103 K/second following the time period. The subjecting to the thermal shock regenerate the electrode material, for example, by removing impurities from the electrode material and/or replenishing metal ions within the electrode material.
    Type: Application
    Filed: May 10, 2024
    Publication date: November 14, 2024
    Inventors: Liangbing HU, Xizheng WANG, Tangyuan LI, Feng LIN, Lei TAO
  • Publication number: 20240367138
    Abstract: The approach disclosed herein is a process for non-equilibrium chemical and materials processing using the combination of non-equilibrium plasma, non-equilibrium multi-functional catalysis, a precisely programed heating and quenching (PHQ), and supersonic reaction quenching to dynamically change the chemical equilibrium and increase the yield and selectivity of the products. An important feature of the disclosed approach is to realize an efficient and high selectivity synthesis method of chemicals and materials by using non-chemical equilibrium, non-equilibrium catalysts, and non-equilibrium of excited states via active control of molecule excitation by low temperature hybrid plasma, dynamics of chemical reactions by programed heating and supersonic quenching, and the design of non-equilibrium catalysts by thermal shocks and plasma coupling to enable distributed and electrified chemical synthesis of hydrogen, ammonia, valued carbon and other chemical products at atmospheric conditions.
    Type: Application
    Filed: March 31, 2022
    Publication date: November 7, 2024
    Applicants: The Trustees of Princeton University, University of Maryland, College Park
    Inventors: Yiguang JU, Liangbing HU
  • Publication number: 20240363907
    Abstract: The present disclosure is directed to electrolyte membrane compositions, electrolyte membranes, batteries utilizing said electrolyte membranes, and methods of assembling said batteries. The electrolyte membranes disclosed herein provide membranes and electrolytes for sustainable and more robust batteries.
    Type: Application
    Filed: March 7, 2024
    Publication date: October 31, 2024
    Applicant: University of Maryland, College Park
    Inventors: Liangbing Hu, Lin XU
  • Publication number: 20240301591
    Abstract: A carbon material can comprise a porous scaffold of carbon fibrils and particles of carbon black attached to the carbon fibrils. The carbon material can be provided in an atmosphere of a gas comprising one or more organic compounds, for example, methane. The carbon material and the gas can be subjected to a temperature (e.g., 1700 K) that causes the organic compound(s) to undergo pyrolysis to form carbon and hydrogen. For example, the carbon material can be used as a Joule heating element to heat the material and the gas to the pyrolysis temperature. At least some of the formed carbon can be deposited on or within the carbon material. As a result, the carbon fibrils in the material can merge to form a carbonized matrix, and the carbon black particles can become embedded within the carbonized matrix.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 12, 2024
    Inventors: Liangbing HU, Qi DONG, Tangyuan LI, Pedro ARIAS-MONJE, Bodiuzzaman JONY, Kishor GUPTA, Satish KUMAR, Chao WANG, Pengfei XIE, Canhui WANG
  • Publication number: 20240287288
    Abstract: A system for discovery of polymer composites can include one or more robotic systems and a machine learning system. The robotic system(s) can fabricate polymer composites, each comprising a mixture of at least two natural materials. The machine learning system can include a screening module, an input/output module, a data augmentation module, a training module, and a prediction module. The screening module can select a reduced design space for polymer composite mixture recipes. The input/output module can instruct the robotic system(s) to fabricate polymer composites and receive measurements of physical characteristics of the fabricated polymer composites to form a data set. The data augmentation module can augment the data set with virtual data points. The training module can train an artificial neural network (ANN) based on the augmented data set. The prediction module can predict a mixture recipe or physical characteristics for a desired polymer composite using the trained ANN.
    Type: Application
    Filed: February 28, 2024
    Publication date: August 29, 2024
    Inventors: Po-Yen CHEN, Tianle CHEN, Liangbing HU
  • Publication number: 20240269882
    Abstract: A delignified wood material is formed by removing substantially all of the lignin from natural wood. The resulting delignified wood retains cellulose-based lumina of the natural wood, with nanofibers of the cellulose microfibrils being substantially aligned along a common direction. The unique microstructure and composition of the delignified wood can provide advantageous thermal insulation and mechanical properties, among other advantages described herein. The thermal and mechanical properties of the delignified wood material can be tailored by pressing or densifying the delignified wood, with increased densification yielding improved strength and thermal conductivity. The chemical composition of the delignified wood also offers unique optical properties that enable passive cooling under solar illumination.
    Type: Application
    Filed: March 7, 2024
    Publication date: August 15, 2024
    Inventors: Liangbing HU, Tian LI, Shuaiming HE, Jianwei SONG, Chaoji CHEN
  • Patent number: 12060274
    Abstract: Cellulose nanofibers (CNF) act as a dispersing agent to directly exfoliate graphite in an aqueous solution using sonication. The resulting suspension has graphite flakes, each having 2-20 monolayers, a relatively large lateral dimension, and a plurality of CNF decorating its surfaces and edges. The dispersing effect of the CNF allows the graphite-CNF suspension to be stored without degradation until desired use. The graphite-CNF suspension can be used to form various composite structures, such as by spraying, coating, pouring, extruding, or printing the suspension, and then drying the suspension. The resulting composite structures have improved tensile strength and toughness due to hydrogen bond interactions between the CNF and graphite.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 13, 2024
    Assignees: University of Maryland, College Park, Trinity Rail Group, LLC
    Inventors: Liangbing Hu, Yubing Zhou, Chaoji Chen, Teng Li, Robert W. Foster, Dapeng Liu
  • Publication number: 20240239004
    Abstract: A piece of natural wood can be immersed in a first solution at a first temperature less than 100° C. and then immersed in a second solution at a second temperature greater than 100° C. so as to form a piece of partially-delignified wood. In some embodiments, the first and second solutions can be the same solution, and the immersion at the second temperature can be heating the solution from the first temperature to the second temperature. The immersion in the first and second solutions can be effective to remove 45-90% of lignin from the piece of natural wood and to destroy a structure of the ray cells in the piece of natural wood while retaining cell walls of the other cells. The partially-delignified wood can then be dried. After drying, the partially-delignified wood can be clastic along its tangential direction but inelastic along its radial and longitudinal directions.
    Type: Application
    Filed: May 27, 2022
    Publication date: July 18, 2024
    Inventors: Liangbing HU, Xinpeng ZHAO, Yu LIU
  • Publication number: 20240222691
    Abstract: The present invention is directed to solid state electrolytes that comprise a coating layer. The present invention is also directed to methods of making the solid state electrolyte materials and methods of using the solid state electrolyte materials in batteries and other electrochemical technologies.
    Type: Application
    Filed: July 20, 2023
    Publication date: July 4, 2024
    Applicant: University of Maryland, College Park
    Inventors: Liangbing HU, Eric Wachsman, Chengwei Wang, Yunhui Gong
  • Publication number: 20240218493
    Abstract: A formation of multielement nanoparticles is disclosed that includes at least three elements. Each of the at least three elements is uniformly distributed within the multielement nanoparticles forming nanoparticles having a homogeneous mixing structure. At least five elements may form a high-entropy nanoparticle structure. A method for manufacturing a formation of multielement nanoparticles includes providing a precursor material composed of the at least three component elements in multielement nanoparticles; heating the precursor material to a temperature and a time; and quenching the precursor to a temperature at a cooling rate to result in a formation of multielement nanoparticles containing at least three elements and the heating and the quenching representing a multielement nanoparticle thermal shock formation process. A corresponding system for manufacturing the formation of multielement nanoparticles and a method of using the multielement nanoparticles are also disclosed.
    Type: Application
    Filed: January 5, 2024
    Publication date: July 4, 2024
    Inventors: Yonggang YAO, Liangbing HU
  • Publication number: 20240182357
    Abstract: A structure can comprise a substrate and a composite coating. The composite coating can be formed over a surface of the substrate. The composite coating can include one or more nanoparticles within an oxide matrix. The nanoparticles can be formed of a temperature-dependent Mott insulator having a phase transition temperature. At a temperature below the phase transition temperature, the composite coating can transmit light in a first wavelength range, and at a temperature above the phase transition temperature, the composite coating can block light in the first wavelength range. For example, the structure can be used as a smart 10 window to help regulate heating of building interiors due to solar radiation. The composite coating can be formed via a short-duration, high-temperature heating pulse, for example, at least 1500 K for less than 60 seconds.
    Type: Application
    Filed: December 5, 2023
    Publication date: June 6, 2024
    Inventors: Liangbing HU, Xinpeng ZHAO
  • Publication number: 20240166933
    Abstract: Radiative cooling compositions, as well as precursors for forming such compositions, are disclosed. The compositions comprise solid particles of at least a first composition (e.g., Al2O3), which are bound by a suitable binder (matrix or framework). During the synthesis of these compositions from a precursor, solvent of a binder-forming liquid such as water glass may be evaporated, or otherwise glass (e.g., mixed oxide) particles in the precursor may be softened and/or melted, in either case providing a binder for the solid particles. The manipulation of composition porosity, impacting mechanical strength, as well as performance characteristics (reflectance and/or emissivity), is possible through the selection of types and amounts of components, such that a suitable combination of properties can be engineered without the need for polymers or other materials that may be detrimental in terms of cost and/or stability.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 23, 2024
    Inventors: Liangbing HU, Xinpeng ZHAO
  • Publication number: 20240167767
    Abstract: A sintering furnace can have a housing, one or more heating elements, and a conveying assembly. Each heating element can be disposed within the housing and can subject a heating zone to a thermal shock temperature profile. A substrate with one or more precursors thereon can be moved by the conveying assembly through an inlet of the housing to the heating zone, where it is subjected to a first temperature of at least 500° C. for a first time period. The conveying assembly can then move the substrate with one or more sintered materials thereon from the heating zone and through an outlet of the housing.
    Type: Application
    Filed: March 25, 2022
    Publication date: May 23, 2024
    Inventors: Liangbing HU, Xizheng WANG, Xinpeng ZHAO, Hua XIE