Patents by Inventor Liangchuan Li
Liangchuan Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10958352Abstract: According to a signal transmitting method, a signal receiving method, and a related device and system, a generated single-wavelength optical carrier may be split into N subcarriers with a same wavelength by using a splitting device, corresponding data modulation and corresponding amplitude spread spectrum modulation are performed on the N subcarriers by using N spreading codes and N low-speed data signals obtained by deserializing a received high-speed data signal, to obtain N spread spectrum modulation signals, and the N spread spectrum modulation signals are combined and output. A multicarrier generation apparatus or the like having a relatively complex structure does not need to be used for optical carrier splitting, and spectrum spreading does not need to be performed in a phase modulation manner in which a plurality of delay units or controllable phase units are required.Type: GrantFiled: July 19, 2019Date of Patent: March 23, 2021Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yuanda Huang, Liangchuan Li
-
Patent number: 10911093Abstract: Embodiments described and shown provide a signal transmission method, a signal receiving method, a related device, and a system. The signal transmission method includes: generating a single-wavelength optical carrier; splitting the single-wavelength optical carrier into N subcarriers having a same wavelength; generating a spreading code corresponding to each of the subcarriers to obtain N spreading codes, where a bandwidth of each of the spreading codes is less than or equal to a preset threshold; deserializing a to-be-transmitted data signal into N sub-data signals; modulating the N subcarriers based on the N sub-data signals and the N spreading codes, to obtain N modulation signals; and combining the N modulation signals into one combined signal, and outputting the combined signal.Type: GrantFiled: September 9, 2019Date of Patent: February 2, 2021Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yi Yu, Yuanda Huang, Liangchuan Li
-
Publication number: 20200403639Abstract: A data processing method includes performing first equalization processing on a data stream that comprises a plurality of sub-data stream segments, performing segment de-interleaving on the data stream, separately performing first forward error correction (FEC) decoding on each sub-data stream segment in a data stream, performing, according to an equalization termination state of each sub-data stream segment, second equalization processing on each sub-data stream segment, performing second FEC decoding on the data stream, and outputting the data stream obtained according to the second FEC decoding in response to a preset iteration termination condition being met, or performing, in response to the preset iteration termination condition not being met, according to the equalization termination state of each sub-data stream segment obtained according to the first equalization, the second equalization processing on each sub-data stream segment obtained according to the second FEC decoding.Type: ApplicationFiled: September 2, 2020Publication date: December 24, 2020Inventors: Zhiyu Xiao, Ling Liu, Liangchuan Li
-
Publication number: 20200366977Abstract: A first optical splitter splits a light source to obtain a first optical signal, a second optical signal, and a third optical signal. A first MZ modulator modulates the first optical signal to output a fourth optical signal. A second MZ modulator modulates the second optical signal to output a fifth optical signal. A first optical coupler couples the fourth optical signal and the fifth optical signal to output a sixth optical signal and a seventh optical signal. A power regulator and a phase shifter respectively perform power adjustment and phase shifting on the third optical signal to output an eighth optical signal. A second optical splitter splits the eighth optical signal into a ninth optical signal and a tenth optical signal. A second optical coupler combines the sixth optical signal and the ninth optical signal. A third optical coupler combines the seventh optical signal and the tenth optical signal.Type: ApplicationFiled: August 6, 2020Publication date: November 19, 2020Applicant: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yanzhao LU, Xie WANG, Liangchuan LI, Shupeng DENG
-
Patent number: 10805032Abstract: Embodiments of this application provide a data transmission method, a terminal device, and a network side device. Encoding, by a terminal device, a first identifier by using a first code word which is selected from at least one code word by the terminal device; sending, by the terminal device, the encoded first identifier to a network side device; receiving, by the terminal device, a second identifier sent by the network side device; decoding, by the terminal device, the second identifier by using the first code word; when the decoded second identifier is the same as the first identifier, encoding, by the terminal device, subsequent data by using the first code word; and sending, by the terminal device, the encoded subsequent data to the network side device.Type: GrantFiled: June 9, 2019Date of Patent: October 13, 2020Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Xie Wang, Yuanda Huang, Liangchuan Li
-
Patent number: 10778253Abstract: An embodiment method includes: performing balancing processing on a data stream that includes a plurality of sub-data stream segments, and performing segment de-interleaving on a data stream obtained after the balancing processing. The method further includes separately performing forward error correction (FEC) decoding on each sub-data stream segment in a data stream obtained after the segment de-interleaving. The method further includes performing, according to a balancing termination state of each sub-data stream segment obtained after previous balancing processing, balancing processing on each sub-data stream segment obtained after the FEC decoding, and performing FEC decoding on the data stream obtained after balancing processing is performed on each sub-data stream segment. When it is determined that a preset iteration termination condition is met, the method includes outputting the data stream obtained after the FEC decoding.Type: GrantFiled: April 27, 2018Date of Patent: September 15, 2020Assignee: Huawei Technologies Co., Ltd.Inventors: Zhiyu Xiao, Ling Liu, Liangchuan Li
-
Publication number: 20200186255Abstract: An optical transmitter, an optical receiver, and an optical transmission method are disclosed. The optical transmitter includes an optical signal generator, N spreaders, N pairs of data modulators, and a combiner, where the optical signal generator generates N optical carriers; an ith spreader spreads an ith optical carrier, to obtain a spread optical signal having two subcarriers; splits the spread optical signal into a first optical signal and a second optical signal; and delays the second optical signal to obtain a third optical signal; an ith pair of data modulators modulate the first optical signal and the third optical signal to obtain a pair of modulated optical signals, transmit the pair of modulated optical signals to the combiner, where the pair of modulated optical signals reaching the combiner differ by 1/(4 fsi) in time domain; and the combiner combines, into one optical signal, N pairs of modulated optical signals.Type: ApplicationFiled: February 14, 2020Publication date: June 11, 2020Inventors: Yi YU, Yuanda HUANG, Liangchuan LI, Xie WANG
-
Patent number: 10630419Abstract: Embodiments of the present invention provide a receiver and a data receiving method. The receiver includes: two first input ends, configured to receive a digital signal of an X-polarization state and a digital signal of a Y-polarization state; a despreading module, configured to despread the digital signal of the X-polarization state and the digital signal of the Y-polarization state based on N delay values and spreading codes of N transmitters, to obtain N first baseband signals and N second baseband signals; and a multiple-input multiple-output equalization module, configured to perform equalization filtering processing on the N first baseband signals and the N second baseband signals, to obtain recovered data of the first polarization states and recovered data of the second polarization states of the N transmitters. In the embodiments of the present invention, the coherent CDMA multipoint-to-point data transmission in an optical communications system is implemented.Type: GrantFiled: April 29, 2019Date of Patent: April 21, 2020Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Xie Wang, Yuanda Huang, Liangchuan Li
-
Patent number: 10616015Abstract: A signal processing system and method, and an apparatus are provided. A phase recovery apparatus may be used to: receive a feedback signal fed back by an information iteration apparatus, perform, based on the feedback signal, phase recovery on a signal output by an equalizer, and output a phase-recovered signal to a post filtering apparatus, so that the post filtering apparatus performs noise filtering on the phase-recovered signal, and outputs a noise-filtered signal to the information iteration apparatus. To be specific, the phase recovery may be performed, based on the signal fed back by the information iteration apparatus, on the signal output by the equalizer. Because output of the information iteration apparatus is more accurate in determining the signal, precision of the phase recovery can be improved, cycle skipping is reduced, and input signal quality of the post filtering apparatus is improved.Type: GrantFiled: May 29, 2018Date of Patent: April 7, 2020Assignee: Huawei Technologies Co., Ltd.Inventors: Ling Liu, Zhiyu Xiao, Liangchuan Li
-
Publication number: 20200014418Abstract: Embodiments described and shown provide a signal transmission method, a signal receiving method, a related device, and a system. The signal transmission method includes: generating a single-wavelength optical carrier; splitting the single-wavelength optical carrier into N subcarriers having a same wavelength; generating a spreading code corresponding to each of the subcarriers to obtain N spreading codes, where a bandwidth of each of the spreading codes is less than or equal to a preset threshold; deserializing a to-be-transmitted data signal into N sub-data signals; modulating the N subcarriers based on the N sub-data signals and the N spreading codes, to obtain N modulation signals; and combining the N modulation signals into one combined signal, and outputting the combined signal.Type: ApplicationFiled: September 9, 2019Publication date: January 9, 2020Applicant: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yi YU, Yuanda HUANG, Liangchuan LI
-
Publication number: 20190342008Abstract: According to a signal transmitting method, a signal receiving method, and a related device and system, a generated single-wavelength optical carrier may be split into N subcarriers with a same wavelength by using a splitting device, corresponding data modulation and corresponding amplitude spread spectrum modulation are performed on the N subcarriers by using N spreading codes and N low-speed data signals obtained by deserializing a received high-speed data signal, to obtain N spread spectrum modulation signals, and the N spread spectrum modulation signals are combined and output. A multicarrier generation apparatus or the like having a relatively complex structure does not need to be used for optical carrier splitting, and spectrum spreading does not need to be performed in a phase modulation manner in which a plurality of delay units or controllable phase units are required.Type: ApplicationFiled: July 19, 2019Publication date: November 7, 2019Inventors: Yuanda HUANG, Liangchuan LI
-
Publication number: 20190296848Abstract: Embodiments of this application provide a data transmission method, a terminal device, and a network side device. Encoding, by a terminal device, a first identifier by using a first code word which is selected from at least one code word by the terminal device; sending, by the terminal device, the encoded first identifier to a network side device; receiving, by the terminal device, a second identifier sent by the network side device; decoding, by the terminal device, the second identifier by using the first code word; when the decoded second identifier is the same as the first identifier, encoding, by the terminal device, subsequent data by using the first code word; and sending, by the terminal device, the encoded subsequent data to the network side device.Type: ApplicationFiled: June 9, 2019Publication date: September 26, 2019Inventors: Xie WANG, Yuanda HUANG, Liangchuan LI
-
Publication number: 20190253285Abstract: A receiver in the present disclosure includes: a first input end, N first output ends, N baseband signal recovery modules, and a multiple-input multiple-output equalization module. Each baseband signal recovery module includes two second output ends; one second output end of each baseband signal recovery module is configured to output a baseband signal; and the other second output end is configured to output data enabling control information. The multiple-input multiple-output equalization module is configured to: control, based on N pieces of data enabling control information, a time sequence of N baseband signals entering the multiple-input multiple-output equalization module for equalization filtering processing, and perform equalization filtering processing on the N baseband signals by using N transmitters as references to obtain recovered data of the N transmitters. According to the embodiments of the present disclosure, asynchronous multi-transmitter data is received.Type: ApplicationFiled: April 24, 2019Publication date: August 15, 2019Inventors: Yuanda HUANG, Xie WANG, Liangchuan LI
-
Publication number: 20190253177Abstract: Embodiments of the present invention provide a receiver and a data receiving method. The receiver includes: two first input ends, configured to receive a digital signal of an X-polarization state and a digital signal of a Y-polarization state; a despreading module, configured to despread the digital signal of the X-polarization state and the digital signal of the Y-polarization state based on N delay values and spreading codes of N transmitters, to obtain N first baseband signals and N second baseband signals; and a multiple-input multiple-output equalization module, configured to perform equalization filtering processing on the N first baseband signals and the N second baseband signals, to obtain recovered data of the first polarization states and recovered data of the second polarization states of the N transmitters. In the embodiments of the present invention, the coherent CDMA multipoint-to-point data transmission in an optical communications system is implemented.Type: ApplicationFiled: April 29, 2019Publication date: August 15, 2019Inventors: Xie WANG, Yuanda HUANG, Liangchuan LI
-
Patent number: 10374722Abstract: According to a signal transmitting method, a signal receiving method, and a related device and system, a generated single-wavelength optical carrier may be split into N subcarriers with a same wavelength by using a splitting device, corresponding data modulation and corresponding amplitude spread spectrum modulation are performed on the N subcarriers by using N spreading codes and N low-speed data signals obtained by deserializing a received high-speed data signal, to obtain N spread spectrum modulation signals, and the N spread spectrum modulation signals are combined and output. A multicarrier generation apparatus or the like having a relatively complex structure does not need to be used for optical carrier splitting, and spectrum spreading does not need to be performed in a phase modulation manner in which a plurality of delay units or controllable phase units are required.Type: GrantFiled: May 17, 2018Date of Patent: August 6, 2019Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yuanda Huang, Liangchuan Li
-
Patent number: 10313016Abstract: Embodiments of the present invention provide data transmission and receiving methods based on an orthogonal frequency division multiplexing technology, and an apparatus. According to the present invention, grouping and differential encoding are performed on multiple subcarriers, and further, carrier location adjustment is performed, so as to effectively improve non-linear tolerance of a multi-subcarrier system.Type: GrantFiled: December 22, 2017Date of Patent: June 4, 2019Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Yuanyuan Fang, Liangchuan Li
-
Publication number: 20190123834Abstract: The present disclosure relates to an apparatus and method of processing a digital signal, wherein an input signal is transformed into the frequency domain by applying a fast Fourier transformation (FFT) processing to obtain a transformed input signal. Positive and negative frequency components of the transformed input signal are separated and respective ones of the separated positive and negative frequency components are separately processed by respective digital filtering to obtain filtered frequency components. The filtered frequency components are combined in the frequency domain using a down-sampling operation for down-sampling the filtered frequency components from an input number of samples per symbol to a different output number of samples per symbol, and the combined output components are converted into the time domain by applying an IFFT processing.Type: ApplicationFiled: December 21, 2018Publication date: April 25, 2019Inventors: Michael Zarubinsky, Doron Cohen, Qingsong Xue, Dori Gidron, Ling Liu, Changsong Xie, Liangchuan Li, Ming Chen
-
Patent number: 10193713Abstract: A method for sending and receiving a signal is disclosed, and a corresponding device and system. The method includes performing constellation mapping on a data stream to obtain a mapped signal, and performing pre-filtering on the mapped signal to convert the mapped signal into a narrowband signal filtered signal. The pre-filtering is finite impulse response filtering. A bandwidth of the narrowband signal filtered signal is less than bandwidth of the mapped signal, and the narrowband signal filtered signal is a baud rate signal. The method also includes performing waveform forming according to the narrowband signal filtered signal to obtain a shaped signal, and performing digital-to-analog conversion on the shaped signal to convert a shaped second signal into an analog signal, and sending the analog signal.Type: GrantFiled: September 20, 2016Date of Patent: January 29, 2019Assignee: Huawei Technologies Co., LtdInventors: Liangchuan Li, Ling Liu
-
Patent number: 10116400Abstract: The present invention discloses an optical signal frequency calibration method and device. The method includes: receiving a first optical signal that experiences a frequency offset and that is generated by a laser in a transmitter of an access node; receiving a reference optical signal sent by a local oscillator; calculating a difference between a specified frequency difference and a frequency difference between the reference optical signal and the first optical signal; and performing frequency calibration on the first optical signal according to the difference, modulating to-be-sent uplink data by using the calibrated first optical signal, and sending the modulated uplink data to a primary node.Type: GrantFiled: September 19, 2017Date of Patent: October 30, 2018Assignee: Huawei Technologies Co., Ltd.Inventors: Yuanda Huang, Liangchuan Li
-
Publication number: 20180287708Abstract: According to a signal transmitting method, a signal receiving method, and a related device and system, a generated single-wavelength optical carrier may be split into N subcarriers with a same wavelength by using a splitting device, corresponding data modulation and corresponding amplitude spread spectrum modulation are performed on the N subcarriers by using N spreading codes and N low-speed data signals obtained by deserializing a received high-speed data signal, to obtain N spread spectrum modulation signals, and the N spread spectrum modulation signals are combined and output. A multicarrier generation apparatus or the like having a relatively complex structure does not need to be used for optical carrier splitting, and spectrum spreading does not need to be performed in a phase modulation manner in which a plurality of delay units or controllable phase units are required.Type: ApplicationFiled: May 17, 2018Publication date: October 4, 2018Inventors: Yuanda HUANG, Liangchuan LI