Patents by Inventor Liangliang Qiang

Liangliang Qiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240390896
    Abstract: An interposer for a flow cell comprises a base layer having a first surface and a second surface opposite the first surface. The base layer comprises black polyethylene terephthalate (PET). A first adhesive layer is disposed on the first surface of the base layer. The first adhesive layer comprises methyl acrylic adhesive. A second adhesive layer is disposed on the second surface of the base layer. The second adhesive layer comprises methyl acrylic adhesive. A plurality of microfluidic channels extends through each of the base layer, the first adhesive layer, and the second adhesive layer.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Applicant: ILLUMINA, Inc.
    Inventors: Maxwell Zimmerley, LiangLiang Qiang, M. Shane Bowen, Steven H. Modiano, Dajun Yuan, Randall Smith, Arthur J. Pitera, Hai Quang Tran, Gerald Kreindl
  • Patent number: 12083514
    Abstract: An interposer for a flow cell comprises a base layer having a first surface and a second surface opposite the first surface. The base layer comprises black polyethylene terephthalate (PET). A first adhesive layer is disposed on the first surface of the base layer. The first adhesive layer comprises methyl acrylic adhesive. A second adhesive layer is disposed on the second surface of the base layer. The second adhesive layer comprises methyl acrylic adhesive. A plurality of microfluidic channels extends through each of the base layer, the first adhesive layer, and the second adhesive layer.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: September 10, 2024
    Assignee: ILLUMINA, Inc.
    Inventors: Maxwell Zimmerley, LiangLiang Qiang, M. Shane Bowen, Steven H. Modiano, Dajun Yuan, Randall Smith, Arthur J. Pitera, Hai Quang Tran, Gerald Kreindl
  • Publication number: 20240167088
    Abstract: The present disclosure describes methods and microfluidic devices for generating clusters of amplicons for a nucleic acid library, and their uses for high-throughput DNA sequencing or detection of target polynucleotides in a sample.
    Type: Application
    Filed: November 1, 2023
    Publication date: May 23, 2024
    Inventors: Liangliang Qiang, Wei Li, Aijie Han
  • Publication number: 20240011089
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Publication number: 20230314326
    Abstract: An example sensor includes a flow cell, a detection device, and a controller. The flow cell includes a passivation layer having opposed surfaces and a reaction site at a first of the opposed surfaces. The flow cell also includes a lid operatively connected to the passivation layer to partially define a flow channel between the lid and the reaction site. The detection device is in contact with a second of the opposed surfaces of the passivation layer, and includes an embedded metal layer that is electrically isolated from other detection circuitry of the detection device. The controller is to ground the embedded metal layer.
    Type: Application
    Filed: May 5, 2023
    Publication date: October 5, 2023
    Applicant: ILLUMINA, INC.
    Inventors: Tracy Helen FUNG, Xiuyu CAI, Lisa KWOK, Hai TRAN, Kevan SAMIEE, Liangliang QIANG, Boyan BOYANOV
  • Publication number: 20230272457
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Application
    Filed: March 6, 2023
    Publication date: August 31, 2023
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Patent number: 11732301
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Patent number: 11680906
    Abstract: An example sensor includes a flow cell, a detection device, and a controller. The flow cell includes a passivation layer having opposed surfaces and a reaction site at a first of the opposed surfaces. The flow cell also includes a lid operatively connected to the passivation layer to partially define a flow channel between the lid and the reaction site. The detection device is in contact with a second of the opposed surfaces of the passivation layer, and includes an embedded metal layer that is electrically isolated from other detection circuitry of the detection device. The controller is to ground the embedded metal layer.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: June 20, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Tracy Helen Fung, Xiuyu Cai, Lisa Kwok, Hai Tran, Kevan Samiee, Liangliang Qiang, Boyan Boyanov
  • Patent number: 11629373
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20230063675
    Abstract: An example of a sequencing kit includes a flow cell and an encapsulation matrix precursor composition. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid and a polymer selected from the group consisting of agar, agarose, alginate, heparin, alginate sulfate, dextran sulfate, hyaluronan, pectin, carrageenan, gelatin, chitosan, cellulose, a collagen polymer, and combinations thereof.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 2, 2023
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas
  • Patent number: 11585757
    Abstract: A device includes a plurality of imaging pixels in a spatial pattern with a formation of features disposed over the pixels. A first and a second feature of the formation of features are disposed over a first pixel. A first luminophore is disposed within or over the first feature. A second luminophore is disposed within or over the second feature. A structured illumination source is to direct at least a portion of first photons in an illumination pattern to the first feature at a first time, and to direct at least a portion of second photons in the illumination pattern to the second feature at a second time. The structured illumination source includes an illumination pattern generator having an illumination pattern generator actuator connected to the illumination pattern generator to cause the illumination pattern to translate or rotate relative to the formation of features.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 21, 2023
    Assignee: Illumina, Inc.
    Inventors: Dajun Yuan, Liangliang Qiang, Minghao Guo
  • Patent number: 11567060
    Abstract: Example nanopore sequencers include a cis well, a trans well, and a nanopore fluidically connecting the cis and trans wells. In one example sequencer, a modified electrolyte (including an electrolyte and a cation complexing agent) is present in the cis well, or the trans well, or in the cis and the trans wells. In another example sequencer, a gel state polyelectrolyte is present in the cis well, or the trans well, or in the cis and the trans wells.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: January 31, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Rohan N. Akolkar, Jeffrey S. Fisher, Jeffrey G. Mandell, Liangliang Qiang, Steven M. Barnard
  • Patent number: 11535890
    Abstract: An example of a sequencing kit includes a flow cell, an encapsulation matrix precursor composition, and a radical initiator. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid, a monomer or polymer including a radical generating and chain elongating functional group, a radical source, and a crosslinker. The radical initiator is part of the encapsulation matrix precursor composition or is a separate component.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 27, 2022
    Assignee: Illumina, Inc.
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas
  • Patent number: 11499192
    Abstract: An example of a sequencing kit includes a flow cell, an encapsulation matrix precursor composition, and a radical initiator. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid, a monomer or polymer including a radical generating and chain elongating functional group, a radical source, and a crosslinker. The radical initiator is part of the encapsulation matrix precursor composition or is a separate component.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 15, 2022
    Assignee: Illumina, Inc.
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas
  • Publication number: 20220250066
    Abstract: An interposer for a flow cell comprises a base layer having a first surface and a second surface opposite the first surface. The base layer comprises black polyethylene terephthalate (PET). A first adhesive layer is disposed on the first surface of the base layer. The first adhesive layer comprises methyl acrylic adhesive. A second adhesive layer is disposed on the second surface of the base layer. The second adhesive layer comprises methyl acrylic adhesive. A plurality of microfluidic channels extends through each of the base layer, the first adhesive layer, and the second adhesive layer.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 11, 2022
    Applicant: ILLUMINA, Inc.
    Inventors: Maxwell Zimmerley, LiangLiang Qiang, M. Shane Bowen, Steven H. Modiano, Dajun Yuan, Randall Smith, Arthur J. Pitera, Hai Quang Tran, Gerald Kreindl
  • Patent number: 11246518
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: February 15, 2022
    Assignee: UNIVERSITY OF CONNECTICUT SCH OF MED/DNT
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos
  • Publication number: 20210269877
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Patent number: 10961576
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 30, 2021
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Publication number: 20200318167
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 8, 2020
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril Delattre, Tarun Khurana
  • Publication number: 20200239954
    Abstract: An example of a sequencing kit includes a flow cell, an encapsulation matrix precursor composition, and a radical initiator. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid, a monomer or polymer including a radical generating and chain elongating functional group, a radical source, and a crosslinker. The radical initiator is part of the encapsulation matrix precursor composition or is a separate component.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 30, 2020
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas