Patents by Inventor Libin Fu

Libin Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10353144
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 16, 2019
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Publication number: 20170322370
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Application
    Filed: March 24, 2017
    Publication date: November 9, 2017
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Patent number: 9632243
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1-n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: April 25, 2017
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Publication number: 20150241628
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Application
    Filed: March 11, 2015
    Publication date: August 27, 2015
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Patent number: 8995051
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: March 31, 2015
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Patent number: 8970947
    Abstract: Embodiments of auto-cladded optical fibers are described. The fibers may have a refractive index profile having a small relative refractive index change. For example, the fiber may include an auto-cladded structure having, e.g., a trough or gradient in the refractive index profile. A beam of light propagating in the fiber may be guided, at least in part, with the auto-cladded structure. In some embodiments, the optical fiber may be all glass. In some embodiments, the optical fiber may include a large-core or an ultra large-core.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 3, 2015
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Liang Dong, Libin Fu, Hugh A. McKay
  • Patent number: 8902493
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Patent number: 8824847
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: September 2, 2014
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Publication number: 20130301115
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Publication number: 20130294736
    Abstract: Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window ??/?c larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
    Type: Application
    Filed: June 11, 2013
    Publication date: November 7, 2013
    Inventors: Liang Dong, Brian K. Thomas, Shigeru Suzuki, Libin Fu
  • Publication number: 20130265635
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 10, 2013
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Patent number: 8498046
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 30, 2013
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Patent number: 8478097
    Abstract: Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window ??/?c larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 2, 2013
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian K. Thomas, Shigeru Suzuki, Libin Fu
  • Patent number: 8467648
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: June 18, 2013
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Publication number: 20130114936
    Abstract: Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window ??/?c larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
    Type: Application
    Filed: September 11, 2012
    Publication date: May 9, 2013
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Brian K. Thomas, Shigeru Suzuki, Libin Fu
  • Publication number: 20120314995
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Application
    Filed: April 16, 2012
    Publication date: December 13, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Patent number: 8285098
    Abstract: Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window ??/?c larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 9, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian K. Thomas, Shigeru Suzuki, Libin Fu
  • Publication number: 20120188632
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius
  • Patent number: 8165441
    Abstract: Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: April 24, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Brian Thomas, Libin Fu
  • Patent number: 8159742
    Abstract: Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1?n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10?3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 17, 2012
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Jun Li, Hugh McKay, Libin Fu, Andrius Marcinkevicius