Patents by Inventor Libo Gao

Libo Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667521
    Abstract: A method of constructing a micromechanical device by additive manufacturing for characterizing strength of a low dimensional material sample, the method including: a) deriving a three-dimensional representation arranged to represent a said micromechanical device with reference to at least one physical characteristic of a said low dimensional material sample; b) transforming the three-dimensional representation into a plurality of two-dimensional representations arranged to individually represent a portion of the three-dimensional representation; and c) forming the micromechanical device from a fluid medium arranged to transform its physical state by stereolithography apparatus in response to a manipulated illumination exposed thereto, whereby a said low dimensional material sample is loaded onto the formed micromechanical device.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: June 6, 2023
    Assignee: City University of Hong Kong
    Inventors: Yang Lu, Libo Gao, Sufeng Fan, Yuejiao Wang
  • Publication number: 20220081300
    Abstract: A method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition includes: directly growing super smooth wrinkle-free graphene films on metal substrates such as copper, nickel and alloys thereof and non-metal substrates such as silicon oxide and silicon carbide, or eliminating the wrinkles of wrinkled graphene through controlled proton injection at a high temperature by precisely controlling the temperature and hydrogen plasma power and time for generating protons; where the plasma-assisted chemical vapor deposition system includes a plasma generator, a vacuum system and a heating system; where the power of the plasma generator is 5 to 1000 W, the pressure of the vacuum system is 10?5 to 105 Pa, and the heating temperature of the system is controllable between 25 to 1000° C.; directly growing a super smooth wrinkle-free graphene by injecting protons on various substrates during growth.
    Type: Application
    Filed: December 24, 2019
    Publication date: March 17, 2022
    Applicant: NANJING UNIVERSITY
    Inventors: Libo GAO, Guowen YUAN, Jie XU
  • Publication number: 20210061646
    Abstract: A method of constructing a micromechanical device by additive manufacturing for characterizing strength of a low dimensional material sample, the method including: a) deriving a three-dimensional representation arranged to represent a said micromechanical device with reference to at least one physical characteristic of a said low dimensional material sample; b) transforming the three-dimensional representation into a plurality of two-dimensional representations arranged to individually represent a portion of the three-dimensional representation; and c) forming the micromechanical device from a fluid medium arranged to transform its physical state by stereolithography apparatus in response to a manipulated illumination exposed thereto, whereby a said low dimensional material sample is loaded onto the formed micromechanical device.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Inventors: Yang Lu, Libo Gao, Sufeng Fan, Yuejiao Wang
  • Patent number: 9966250
    Abstract: A method of in-situ transfer during fabrication of a component comprising a 2-dimensional crystalline thin film on a substrate is disclosed. In one embodiment, the method includes forming a layered structure comprising a polymer, a 2-dimensional crystalline thin film, a metal catalyst, and a substrate. The metal catalyst, being a growth medium for the two-dimensional crystalline thin film, is etched and removed by infiltrating liquid to enable the in-situ transfer of the two-dimensional crystalline thin film directly onto the underlying substrate.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: May 8, 2018
    Assignee: National University of Singapore
    Inventors: Kian Ping Loh, Libo Gao, Antonio Helio Castro Neto
  • Publication number: 20170263447
    Abstract: A method of in-situ transfer during fabrication of a component comprising a 2-dimensional crystalline thin film on a substrate is disclosed. In one embodiment, the method includes forming a layered structure comprising a polymer, a 2-dimensional crystalline thin film, a metal catalyst, and a substrate. The metal catalyst, being a growth medium for the two-dimensional crystalline thin film, is etched and removed by infiltrating liquid to enable the in-situ transfer of the two-dimensional crystalline thin film directly onto the underlying substrate.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 14, 2017
    Inventors: Kian Ping Loh, Libo Gao, Antonio Helio Castro Neto
  • Patent number: 9758381
    Abstract: A method of in-situ transfer during fabrication of a component comprising a 2-dimensional crystalline thin film on a substrate is disclosed. In one embodiment, the method includes forming a layered structure comprising a polymer, a 2-dimensional crystalline thin film, a metal catalyst, and a substrate. The metal catalyst, being a growth medium for the two-dimensional crystalline thin film, is etched and removed by infiltrating liquid to enable the in-situ transfer of the two-dimensional crystalline thin film directly onto the underlying substrate.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 12, 2017
    Assignee: National University of Singapore
    Inventors: Kian Ping Loh, Libo Gao, Antonio Helio Castro Neto
  • Publication number: 20160176713
    Abstract: A method of in-situ transfer during fabrication of a component comprising a 2-dimensional crystalline thin film on a substrate is disclosed. In one embodiment, the method includes forming a layered structure comprising a polymer, a 2-dimensional crystalline thin film, a metal catalyst, and a substrate. The metal catalyst, being a growth medium for the two-dimensional crystalline thin film, is etched and removed by infiltrating liquid to enable the in-situ transfer of the two-dimensional crystalline thin film directly onto the underlying substrate.
    Type: Application
    Filed: July 31, 2014
    Publication date: June 23, 2016
    Inventors: Kian Ping LOH, Libo GAO, Antonio Helio CASTRO NETO
  • Patent number: 9216559
    Abstract: A method for transferring graphene nondestructively and at a low cost. In the method, a graphene is used whose surface is coated with transferring media and whose original substrate is an electrode, the electrode is placed into an electrolyte, and the graphene is separated from the original substrate by means of the driving force of bubbles and the gas intercalation produced on the graphene electrode surface during electrolysis. Then, the graphene coated with transferring media is nondestructively combined with a target substrate. The transferring media is removed so as to transfer the graphene to the target substrate nondestructively. The transferring method results in no damage or loss with respect to the graphene and the original substrate, and the original substrate can be re-used. Furthermore, the method is easy to perform, works quickly, is easy to control, and is pollution-free.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: December 22, 2015
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Wencai Ren, Libo Gao, Laipeng Ma, Huiming Cheng
  • Publication number: 20140130972
    Abstract: A method for transferring graphene nondestructively and at a low cost. In the method, a graphene is used whose surface is coated with transferring media and whose original substrate is an electrode, the electrode is placed into an electrolyte, and the graphene is separated from the original substrate by means of the driving force of bubbles and the gas intercalation produced on the graphene electrode surface during electrolysis. Then, the graphene coated with transferring media is nondestructively combined with a target substrate. The transferring media is removed so as to transfer the graphene to the target substrate nondestructively. The transferring method results in no damage or loss with respect to the graphene and the original substrate, and the original substrate can be re-used. Furthermore, the method is easy to perform, works quickly, is easy to control, and is pollution-free.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 15, 2014
    Applicant: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Wencai Ren, Libo Gao, Laipeng Ma, Huiming Cheng