Patents by Inventor Lien Lee

Lien Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220290291
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11438180
    Abstract: Systems and method are provided for determining a reliability of a physically unclonable function (PUF) cell of a device. A first signal is provided to a first branch of a PUF cell and a second signal is provided to a second branch of the PUF cell, the first and second signals being provided in synchronization. A base PUF cell value is determined based on an output of the PUF cell produced by the first signal and the second signal. A third signal is provided to the first branch and a fourth signal is provided to the second branch, the third signal and fourth signal being provided out of synchronization. A stressed PUF cell value is determined based on an output of the PUF cell produced by the third signal and the fourth signal. The PUF cell is determined to be unusable based on a difference between the PUF cell value and the stressed PUF cell value.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shih-Lien Linus Lu, Cheng-En Lee
  • Publication number: 20220278115
    Abstract: Ferroelectric stacks are disclosed herein that can improve retention performance of ferroelectric memory devices. An exemplary ferroelectric stack has a ferroelectric switching layer (FSL) stack disposed between a first electrode and a second electrode. The ferroelectric stack includes a barrier layer disposed between a first FSL and a second FSL, where a first crystalline condition of the barrier layer is different than a second crystalline condition of the first FSL and/or the second FSL. In some embodiments, the first crystalline condition is an amorphous phase, and the second crystalline condition is an orthorhombic phase. In some embodiments, the first FSL and/or the second FSL include a first metal oxide, and the barrier layer includes a second metal oxide. The ferroelectric stack can be a ferroelectric capacitor, a portion of a transistor, and/or connected to a transistor in a ferroelectric memory device to provide data storage in a non-volatile manner.
    Type: Application
    Filed: July 26, 2021
    Publication date: September 1, 2022
    Inventors: Yi Yang Wei, Tzu-Yu Lin, Bi-Shen Lee, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang
  • Patent number: 11430729
    Abstract: Various embodiments of the present application are directed towards a metal-insulator-metal (MIM) capacitor. The MIM capacitor comprises a bottom electrode disposed over a semiconductor substrate. A top electrode is disposed over and overlies the bottom electrode. A capacitor insulator structure is disposed between the bottom electrode and the top electrode. The capacitor insulator structure comprises at least three dielectric structures vertically stacked upon each other. A bottom half of the capacitor insulator structure is a mirror image of a top half of the capacitor insulator structure in terms of dielectric materials of the dielectric structures.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Cheng-Te Lee, Rei-Lin Chu, Chii-Ming Wu, Yeur-Luen Tu, Chung-Yi Yu
  • Patent number: 11430951
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a data storage structure disposed between a top electrode and a bottom electrode. The data storage structure includes a lower switching layer overlying the bottom electrode, and an upper switching layer overlying the lower switching layer. The lower switching layer comprises a dielectric material doped with a first dopant.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Patent number: 11398406
    Abstract: A method of forming an integrated circuit structure includes forming an etch stop layer over a conductive feature, forming a dielectric layer over the etch stop layer, forming an opening in the dielectric layer to reveal the etch stop layer, and etching the etch stop layer through the opening using an etchant comprising an inhibitor. An inhibitor film comprising the inhibitor is formed on the conductive feature. The method further includes depositing a conductive barrier layer extending into the opening, performing a treatment to remove the inhibitor film after the conductive barrier layer is deposited, and depositing a conductive material to fill a remaining portion of the opening.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: July 26, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Pang Kuo, Ya-Lien Lee, Chieh-Yi Shen
  • Patent number: 11393833
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over a substrate and a top electrode disposed over the bottom electrode. A ferroelectric switching layer is arranged between the bottom electrode and the top electrode. The ferroelectric switching layer is configured to change polarization based upon one or more voltages applied to the bottom electrode or the top electrode. A seed layer is arranged between the bottom electrode and the top electrode. The seed layer and the ferroelectric switching layer have a non-monoclinic crystal phase.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bi-Shen Lee, Hsing-Lien Lin, Hsun-Chung Kuang, Yi Yang Wei
  • Publication number: 20220214943
    Abstract: A method of screening weak bits in a memory array includes dividing the memory array into a first and a second memory array, storing a first set of data in the first memory array, performing a first baking process on the first memory array or applying a first magnetic field to the first memory array, determining that a first portion of the first set of data stored in the first memory array is altered by the first baking process or the first magnetic field, and at least one of replacing memory cells of a first set of memory cells that are storing the first portion of the first set of data with corresponding memory cells in the second memory array of the memory array, or not using the memory cells of the first set of memory cells storing the first portion of the first set of data.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Yu-Der CHIH, Chia-Fu LEE, Chien-Yin LIU, Yi-Chun SHIH, Kuan-Chun CHEN, Hsueh-Chih YANG, Shih-Lien Linus LU
  • Patent number: 11362035
    Abstract: Some embodiments relate to a semiconductor structure including a first inter-level dielectric (ILD) layer overlying a substrate. A lower conductive structure is disposed within the first ILD layer. A capping layer continuously extends along a top surface of the lower conductive structure. An upper ILD structure overlies the lower conductive structure. A conductive body is disposed within the upper ILD structure. A bottom surface of the conductive body directly overlies the top surface of the lower conductive structure. A width of the bottom surface of the conductive body is less than a width of the top surface of the lower conductive structure. A diffusion barrier layer is disposed between the conductive body and the upper ILD structure. The diffusion barrier layer is laterally offset from a region disposed directly between the bottom surface of the conductive body and the top surface of the lower conductive structure by a non-zero distance.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Wen Hsueh, Chii-Ping Chen, Neng-Jye Yang, Ya-Lien Lee, An-Jiao Fu, Ya-Ching Tseng
  • Patent number: 11345991
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220084937
    Abstract: A semiconductor structure and a method of forming the same are provided. A method includes depositing a dielectric layer over a conductive feature. The dielectric layer is patterned to form an opening therein. The opening exposes a first portion of the conductive feature. A first barrier layer is deposited on a sidewall of the opening. The first portion of the conductive feature remains exposed at the end of depositing the first barrier layer.
    Type: Application
    Filed: January 7, 2021
    Publication date: March 17, 2022
    Inventors: Yao-Min Liu, Chia-Pang Kuo, Chien Chung Huang, Chih-Yi Chang, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su, Ming-Hsing Tsai
  • Publication number: 20220068826
    Abstract: A structure includes a first conductive feature in a first dielectric layer; a second dielectric layer over the first dielectric layer; and a second conductive feature extending through the second dielectric layer to physically contact the first conductive feature, wherein the second conductive feature includes a metal adhesion layer over and physically contacting the first conductive feature; a barrier layer extending along sidewalls of the second dielectric layer; and a conductive filling material extending over the metal adhesion layer and the barrier layer, wherein a portion of the conductive filling material extends between the barrier layer and the metal adhesion layer.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 3, 2022
    Inventors: Chia-Pang Kuo, Chih-Yi Chang, Ming-Hsiao Hsieh, Wei-Hsiang Chan, Ya-Lien Lee, Chien Chung Huang, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20210391275
    Abstract: A method includes forming an insulating layer over a conductive feature; etching the insulating layer to expose a first surface of the conductive feature; covering the first surface of the conductive feature with a sacrificial material, wherein the sidewalls of the insulating layer are free of the sacrificial material; covering the sidewalls of the insulating layer with a barrier material, wherein the first surface of the conductive feature is free of the barrier material, wherein the barrier material includes tantalum nitride (TaN) doped with a transition metal; removing the sacrificial material; and covering the barrier material and the first surface of the conductive feature with a conductive material.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Chia-Pang Kuo, Huan-Yu Shih, Wen-Hsuan Chen, Cheng-Lun Tsai, Ya-Lien Lee, Cheng-Hui Weng, Chun-Chieh Lin, Hung-Wen Su, Yao-Min Liu
  • Patent number: 11183424
    Abstract: Embodiments described herein relate generally to one or more methods for forming a barrier layer for a conductive feature in semiconductor processing. In some embodiments, an opening is formed through a dielectric layer to a conductive feature. A barrier layer is formed in the opening along a sidewall of the dielectric layer and on a surface of the conductive feature. Forming the barrier layer includes depositing a layer including using a precursor gas. The precursor gas has a first incubation time for deposition on the surface of the conductive feature and has a second incubation time for deposition on the sidewall of the dielectric layer. The first incubation time is greater than the second incubation time. A conductive fill material is formed in the opening and on the barrier layer.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: November 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Pang Kuo, Ya-Lien Lee
  • Patent number: 11177168
    Abstract: A method includes forming a trench in a low-K dielectric layer, where the trench exposes an underlying contact area of a substrate. A first tantalum nitride (TaN) layer is conformally deposited within the trench, where the first TaN layer is deposited using atomic layer deposition (ALD) or chemical vapor deposition (CVD). A tantalum (Ta) layer is deposited on the first TaN layer conformally within the trench, where the Ta layer is deposited using physical vapor deposition (PVD). An electroplating process is performed to deposit a conductive layer over the Ta layer. A via is formed over the conductive layer, where forming the via includes depositing a second TaN layer within the via and in contact with the conductive layer.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Lien Lee, Hung-Wen Su, Kuei-Pin Lee, Yu-Hung Lin, Yu-Min Chang
  • Publication number: 20210343535
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Patent number: 11145542
    Abstract: A semiconductor device including a substrate having a dielectric layer over the substrate and a first conductive feature disposed within the dielectric layer. A metal nitride material is disposed directly on a top surface of the first conductive feature. A metal oxynitride material is disposed directly on a top surface of the dielectric layer, wherein the metal nitride and the metal oxynitride are coplanar. A second conductive feature is disposed over and interfacing the metal nitride material.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ya-Lien Lee
  • Publication number: 20210287994
    Abstract: Some embodiments relate to a semiconductor structure including a first inter-level dielectric (ILD) layer overlying a substrate. A lower conductive structure is disposed within the first ILD layer. A capping layer continuously extends along a top surface of the lower conductive structure. An upper ILD structure overlies the lower conductive structure. A conductive body is disposed within the upper ILD structure. A bottom surface of the conductive body directly overlies the top surface of the lower conductive structure. A width of the bottom surface of the conductive body is less than a width of the top surface of the lower conductive structure. A diffusion barrier layer is disposed between the conductive body and the upper ILD structure. The diffusion barrier layer is laterally offset from a region disposed directly between the bottom surface of the conductive body and the top surface of the lower conductive structure by a non-zero distance.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 16, 2021
    Inventors: Hsiu-Wen Hsueh, Chii-Ping Chen, Neng-Jye Yang, Ya-Lien Lee, An-Jiao Fu, Ya-Ching Tseng
  • Patent number: 11062909
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20210202306
    Abstract: One or more techniques or systems for mitigating pattern collapse are provided herein. For example, a semiconductor structure for mitigating pattern collapse is formed. In some embodiments, the semiconductor structure includes an extreme low-k (ELK) dielectric region associated with a via or a metal line. For example, a first metal line portion and a second metal line portion are associated with a first lateral location and a second lateral location, respectively. In some embodiments, the first portion is formed based on a first stage of patterning and the second portion is formed based on a second stage of patterning. In this manner, pattern collapse associated with the semiconductor structure is mitigated, for example.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Chih-Yuan Ting, Ya-Lien Lee, Chung-Wen Wu, Jeng-Shiou Chen