Patents by Inventor Lieven Verslegers

Lieven Verslegers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230305243
    Abstract: A system for passive alignment of fibers to an interface of a photonic integrated circuit (PIC) includes an input frame, an actuator, and an output frame. The actuator arranged to apply force along a force axis to the input frame. The output frame including a tip for picking up a plate and transferring the force thereto, the output frame being connected to the input frame such that the output frame may tilt relative to the input frame and the output frame is elastically biased relative to the input frame into a position wherein the tip is aligned on the force axis.
    Type: Application
    Filed: May 30, 2023
    Publication date: September 28, 2023
    Inventors: Daoyi Wang, Ryohei Urata, Lieven Verslegers, Jan Petykiewicz
  • Patent number: 11693197
    Abstract: A system for passive alignment of fibers to an interface of a photonic integrated circuit (PIC) includes an input frame, an actuator, and an output frame. The actuator arranged to apply force along a force axis to the input frame. The output frame including a tip for picking up a plate and transferring the force thereto, the output frame being connected to the input frame such that the output frame may tilt relative to the input frame and the output frame is elastically biased relative to the input frame into a position wherein the tip is aligned on the force axis.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: Daoyi Wang, Ryohei Urata, Lieven Verslegers, Jan Petykiewicz
  • Patent number: 11564312
    Abstract: The present disclosure provides for an example integrated optics assembly. The integrated optics assembly may include an optics mount, a substrate including a heat sink, and a photonic integrated circuit (“PIC”). The optics mount may be adapted to support a light source on a first end of the optics mount. The first end of the optics mount may be coupled to a region of the substrate including the heat sink. The heat sink may remove or dissipate the heat produced by the light source. A second end of the optics mount may be coupled to the PIC such that the optics mount extends between the substrate and the PIC. This may decrease the amount of space the optics mount takes up on the PIC thereby allowing the overall size of the PIC to be decreased. Decreasing the size of the PIC may allow for more PICS per wafer.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: January 24, 2023
    Assignee: Google LLC
    Inventors: Lieven Verslegers, Hong Liu, Kevin Yasumura, Jill Berger, Ryohei Urata
  • Publication number: 20220413234
    Abstract: A system for passive alignment of fibers to an interface of a photonic integrated circuit (PIC) includes an input frame, an actuator, and an output frame. The actuator arranged to apply force along a force axis to the input frame. The output frame including a tip for picking up a plate and transferring the force thereto, the output frame being connected to the input frame such that the output frame may tilt relative to the input frame and the output frame is elastically biased relative to the input frame into a position wherein the tip is aligned on the force axis.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Daoyi Wang, Ryohei Urata, Lieven Verslegers, Jan Petykiewicz
  • Publication number: 20220381975
    Abstract: A photonic integrated circuit (PIC) includes one or more couplers to interface a light source with the PIC, a splitter directly coupled to the one or more couplers at a coupling point of the PIC, a modulator to receive light from the couplers, and a connecting waveguide to connect the splitter to the modulator. The waveguide may be a rib waveguide. The PIC may be integrated with devices such as a CWDM or a PSM device, and may provide improved performance and lower attention for high optical power applications.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Inventors: Lieven Verslegers, Ryohei Urata, Mohammad Sotoodeh, Liming Wang
  • Patent number: 11340468
    Abstract: A photonic integrated circulator can be fabricated by including a plurality of polarizing beam splitters and optical polarization rotators such that two copies of the optical signal are output at a receiver in substantially aligned polarization states. The circulator can be used for facilitating bi-directional communications between photonic integrated circuit devices, which are inherently polarization sensitive, while reducing signal loss.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 24, 2022
    Assignee: Google LLC
    Inventors: Ryohei Urata, Lieven Verslegers, Hong Liu, Daoyi Wang
  • Publication number: 20220104342
    Abstract: The present disclosure provides for an example integrated optics assembly. The integrated optics assembly may include an optics mount, a substrate including a heat sink, and a photonic integrated circuit (“PIC”). The optics mount may be adapted to support a light source on a first end of the optics mount. The first end of the optics mount may be coupled to a region of the substrate including the heat sink. The heat sink may remove or dissipate the heat produced by the light source. A second end of the optics mount may be coupled to the PIC such that the optics mount extends between the substrate and the PIC. This may decrease the amount of space the optics mount takes up on the PIC thereby allowing the overall size of the PIC to be decreased. Decreasing the size of the PIC may allow for more PICS per wafer.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 31, 2022
    Applicant: Google LLC
    Inventors: Lieven Verslegers, Hong Liu, Kevin Yasumura, Jill Berger, Ryohei Urata
  • Patent number: 11143816
    Abstract: Methods and systems for stabilized directional couplers are disclosed and may include a system comprising first and second directional couplers formed by first and second waveguides, where one of the waveguides may comprise a length extender between the directional couplers. The directional couplers may be formed by reduced spacing between the waveguides on opposite sides of the length extender. An input optical signal may be communicated into one of the waveguides, where at least a portion of the input optical signal may be coupled between the waveguides in the first directional coupler and at least a portion of the coupled optical signal may be coupled between the waveguides in the second directional coupler. Optical signals may be communicated out of the system with magnitudes at a desired percentage of the input optical signal. The length extender may add phase delay for signals in one of the first and second waveguides.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 12, 2021
    Assignee: Luxtera LLC
    Inventors: Lieven Verslegers, Steffen Gloeckner, Adithyaram Narasimha, Attila Mekis
  • Patent number: 11137544
    Abstract: Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may include rows of continuous waveguides with scatterers extending throughout a length of the perturbed waveguides a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSGC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSGC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating coupler may comprise individual scatterers between the perturbed waveguides.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 5, 2021
    Assignee: Luxtera LLC
    Inventors: Lieven Verslegers, Attila Mekis
  • Patent number: 10895702
    Abstract: An apparatus including a photonic integrated circuit (PIC) coupled to an optical bench is disclosed. The PIC includes at least one grating coupler disposed thereon and the optical bench includes an optical system disposed thereon. The apparatus also includes an integrated heater at an upper surface of the PIC under the optical bench or at a bottom surface of the optical bench over the PIC. The apparatus also includes a layer of solder disposed between the PIC and the optical bench for coupling the bottom surface of the optical bench to the PIC. In some implementations, the layer of solder is in thermal communication with the integrated heater.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: January 19, 2021
    Assignee: Google LLC
    Inventors: Kevin Yasumura, Lieven Verslegers, Jill Berger
  • Patent number: 10855378
    Abstract: Methods and systems for a silicon-based optical phase modulator with high modal overlap may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: December 1, 2020
    Assignee: Luxtera LLC
    Inventors: Subal Sahni, Kam-Yan Hon, Attila Mekis, Gianlorenzo Masini, Lieven Verslegers
  • Publication number: 20200363646
    Abstract: A photonic integrated circulator can be fabricated by including a plurality of polarizing beam splitters and optical polarization rotators such that two copies of the optical signal are output at a receiver in substantially aligned polarization states. The circulator can be used for facilitating bi-directional communications between photonic integrated circuit devices, which are inherently polarization sensitive, while reducing signal loss.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Inventors: Ryohei Urata, Lieven Verslegers, Hong Liu, Daoyi Wang
  • Patent number: 10812196
    Abstract: Systems and methods of transmitting direct detection optical signal are provided. A direct detection optical transmitter according to illustrative embodiments includes a Mach Zehnder Modulator (MZM) configured to modulate laser light based on an electrical drive signal to generate a modulated optical signal and a complementary-modulated optical signal. The optical transmitter includes an optical finite impulse response (FIR) filter configured to receive the complementary-modulated optical signal and generate a filtered optical signal. The optical transmitter includes a polarization rotator configured to receive the filtered optical signal and output a rotated optical signal. The optical transmitter includes an optical combiner configured to combine the modulated optical signal and the rotated optical signal. The optical transmitter includes an output port configured to output the combined optical signal.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 20, 2020
    Assignee: Google LLC
    Inventors: Xiang Zhou, Lieven Verslegers, Hong Liu, Ryohei Urata
  • Publication number: 20200310053
    Abstract: An apparatus including a photonic integrated circuit (PIC) coupled to an optical bench is disclosed. The PIC includes at least one grating coupler disposed thereon and the optical bench includes an optical system disposed thereon. The apparatus also includes an integrated heater at an upper surface of the PIC under the optical bench or at a bottom surface of the optical bench over the PIC. The apparatus also includes a layer of solder disposed between the PIC and the optical bench for coupling the bottom surface of the optical bench to the PIC. In some implementations, the layer of solder is in thermal communication with the integrated heater.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 1, 2020
    Inventors: Kevin Yasumura, Lieven Verslegers, Jill Berger
  • Patent number: 10788632
    Abstract: A photonic integrated circuit for coupling a laser from an optical assembly to a grating coupler is disclosed. A method for coupling a laser to a photonic integrated circuit is disclosed. The optical assembly includes an optical system disposed on a v-groove bench. The optical system typically includes a laser source, a coupling lens or lens system, an optional isolator, a beam redirector that includes a prism or other light turning element and a cylindrical tube mounted on the v-groove bench. The method of tuning the angle of incidence from the optical assembly to the grating coupler is also disclosed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 29, 2020
    Assignee: Google LLC
    Inventors: Daoyi Wang, Lieven Verslegers, Ryohei Urata
  • Patent number: 10775637
    Abstract: A photonic integrated circulator can be fabricated by including a plurality of polarizing beam splitters and optical polarization rotators such that two copies of the optical signal are output at a receiver in substantially aligned polarization states. The circulator can be used for facilitating bi-directional communications between photonic integrated circuit devices, which are inherently polarization sensitive, while reducing signal loss.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: September 15, 2020
    Assignee: Google LLC
    Inventors: Ryohei Urata, Lieven Verslegers, Hong Liu, Daoyi Wang
  • Publication number: 20200280372
    Abstract: A dual-mode optical transceiver is disclosed. The dual-mode optical transceiver includes a receiver section configured to receive both coherently modulated and intensity modulated optical signals and to be optically switched between a first receiver mode for direct detection and a second receiver mode for coherent detection, and a transmitter section including a nested Mach-Zehnder Modulator or a polarization multiplexed quad Mach-Zehnder Modulator configured to be operated in a first transmission mode to output an intensity modulated optical signal and a second transmission mode to output a coherently modulated optical signal. In some implementations, the dual-mode optical receiver includes an optical switch configured to selectively direct a received optical signal down a direct detection optical circuit or a coherent detection optical circuit based on a control signal applied to the optical switch.
    Type: Application
    Filed: July 19, 2019
    Publication date: September 3, 2020
    Inventors: Wenzao Li, Ryohei Urata, Xiang Zhou, Lieven Verslegers
  • Patent number: 10763968
    Abstract: A dual-mode optical transceiver is disclosed. The dual-mode optical transceiver includes a receiver section configured to receive both coherently modulated and intensity modulated optical signals and to be optically switched between a first receiver mode for direct detection and a second receiver mode for coherent detection, and a transmitter section including a nested Mach-Zehnder Modulator or a polarization multiplexed quad Mach-Zehnder Modulator configured to be operated in a first transmission mode to output an intensity modulated optical signal and a second transmission mode to output a coherently modulated optical signal. In some implementations, the dual-mode optical receiver includes an optical switch configured to selectively direct a received optical signal down a direct detection optical circuit or a coherent detection optical circuit based on a control signal applied to the optical switch.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: September 1, 2020
    Assignee: Google LLC
    Inventors: Wenzao Li, Ryohei Urata, Xiang Zhou, Lieven Verslegers
  • Publication number: 20200241222
    Abstract: A photonic integrated circuit for coupling a laser from an optical assembly to a grating coupler is disclosed. A method for coupling a laser to a photonic integrated circuit is disclosed. The optical assembly includes an optical system disposed on a v-groove bench. The optical system typically includes a laser source, a coupling lens or lens system, an optional isolator, a beam redirector that includes a prism or other light turning element and a cylindrical tube mounted on the v-groove bench. The method of tuning the angle of incidence from the optical assembly to the grating coupler is also disclosed.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventors: Daoyi Wang, Lieven Verslegers, Ryohei Urata
  • Patent number: 10686526
    Abstract: Methods and systems for silicon photonics wavelength division multiplexing transceivers are disclosed and may include, in a transceiver integrated in a silicon photonics chip: generating a first modulated output optical signal at a first wavelength utilizing a first electrical signal, generating a second modulated output optical signal at a second wavelength utilizing a second electrical signal, communicating the first and second modulated output optical signals into an optical fiber coupled to the chip utilizing a multiplexing grating coupler in the chip. A received input optical signal may be split into a modulated input optical signal at the first wavelength and a modulated input optical signal at the second wavelength utilizing a demultiplexing grating coupler in the chip. The first and second modulated input optical signals may be converted to first and second electrical input signals utilizing first and second photodetectors in the chip.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 16, 2020
    Assignee: Luxtera, Inc.
    Inventors: Attila Mekis, Peter De Dobbelaere, Lieven Verslegers, Peng Sun, Yannick De Koninck