Patents by Inventor Lihui Gu

Lihui Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11056402
    Abstract: An integrated circuit chip and a manufacturing method therefor, and a gate drive circuit, the integrated circuit chip comprising: a semiconductor substrate (103), a high voltage island (101a) being formed in the semiconductor substrate (103); a high voltage junction terminal (102a), the high voltage junction terminal (102a) surrounding the high voltage island (101a), a depletion type MOS device (N1) being formed on the high voltage junction terminal (102a), a gate electrode and a drain electrode of the depletion type MOS device (N1) being short connected, and a source electrode of the depletion type MOS device (N1) being connected to a high side power supply end (VB) of the integrated circuit chip; and a bipolar transistor (Q1), a collector electrode of the bipolar transistor (Q1) being short connected to the substrate and being connected to a low side power supply end (VCC) of the integrated circuit chip, an emitter of the bipolar transistor (Q1) being connected to a gate electrode of the depletion type MOS
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: July 6, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Lihui Gu, Sen Zhang, Congming Qi
  • Publication number: 20200258782
    Abstract: An integrated circuit chip and a manufacturing method therefor, and a gate drive circuit, the integrated circuit chip comprising: a semiconductor substrate (103), a high voltage island (101a) being formed in the semiconductor substrate (103); a high voltage junction terminal (102a), the high voltage junction terminal (102a) surrounding the high voltage island (101a), a depletion type MOS device (N1) being formed on the high voltage junction terminal (102a), a gate electrode and a drain electrode of the depletion type MOS device (N1) being short connected, and a source electrode of the depletion type MOS device (N1) being connected to a high side power supply end (VB) of the integrated circuit chip; and a bipolar transistor (Q1), a collector electrode of the bipolar transistor (Q1) being short connected to the substrate and being connected to a low side power supply end (VCC) of the integrated circuit chip, an emitter of the bipolar transistor (Q1) being connected to a gate electrode of the depletion type MOS
    Type: Application
    Filed: August 31, 2018
    Publication date: August 13, 2020
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Lihui GU, Sen ZHANG, Congming QI
  • Patent number: 8957494
    Abstract: A high-voltage Schottky diode and a manufacturing method thereof are disclosed in the present disclosure. The diode includes: a P-type substrate and two N-type buried layers, a first N-type buried layer is located below a cathode lead-out area, and a second N-type buried layer is located below a cathode region; an epitaxial layer; two N-type well regions located on the epitaxial layer, a first N-type well region is a lateral drift region and it is provided with a cathode lead-out region, and a second N-type well region is located on the second N-type buried layer and it is a cathode region; a first P-type well region located on the second N-type buried layer and surrounding the cathode region; a field oxide isolation region located on the lateral drift region; an anode located on the cathode region and a cathode located on the surface of the cathode lead-out region.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 17, 2015
    Assignee: CSMC Technologies FAB1 Co., Ltd.
    Inventor: Lihui Gu
  • Publication number: 20140145290
    Abstract: A high-voltage Schottky diode and a manufacturing method thereof are disclosed in the present disclosure. The diode includes: a P-type substrate and two N-type buried layers, a first N-type buried layer is located below a cathode lead-out area, and a second N-type buried layer is located below a cathode region; an epitaxial layer; two N-type well regions located on the epitaxial layer, a first N-type well region is a lateral drift region and it is provided with a cathode lead-out region, and a second N-type well region is located on the second N-type buried layer and it is a cathode region; a first P-type well region located on the second N-type buried layer and surrounding the cathode region; a field oxide isolation region located on the lateral drift region; an anode located on the cathode region and a cathode located on the surface of the cathode lead-out region.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 29, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventor: Lihui Gu