Patents by Inventor Liji Huang

Liji Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180325183
    Abstract: The design and structure as well as the control scheme of a smart electronic vaporizer device having a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and control electronics that provide the vaporizing process in proportional to the user inhalation flowrate or strength for the best simulation of the experience for traditional cigarette. The device further incorporates a MEMS gas composition sensor that is coupled with the mass flow sensor to measure the user's respiratory health data, including but not limited to asthma status and metabolism related respiratory exchange rate. The device is further capable to relay the data to the designated mobile device and further to the designated cloud for big data process and sharing.
    Type: Application
    Filed: July 26, 2018
    Publication date: November 15, 2018
    Applicant: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20180299308
    Abstract: The present invention disclosed a micromachined composite silicon flow sensor that is comprised of calorimetric flow sensing elements, time-of-flight sensing elements as well as independent temperature sensing element on a silicon-on-insulator device where the device layer is used for the thermal isolation membrane. The disclosed composite silicon flow sensor can measure mass flowrate, volumetric flowrate and flow medium temperature simultaneously, from which a full spectrum of flow parameters including flow pressure can be obtained. The sensor can be further used to alert any changes in physical properties of flow medium during operation. The disclosed manufacture process details the micromachining process of making such a sensor.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 18, 2018
    Applicant: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 10066976
    Abstract: The design and structure of a vortex flow meter with large dynamic range utilizing a micro-machined thermal flow sensing device for simultaneously measurement of volumetric flowrate via vortex street frequency as well as mass flowrate is exhibited in this disclosure. The micro-machined thermal flow sensing device is placed at the central point of a channel inside the bluff body where the channel direction is not perpendicular to the direction of fluid flow in the conduit. The thermal flow sensing device is operating in a time-of-flight principle for acquiring the vortex street frequency such that any surface conditions of the device shall not have significant impact to the measured values. With a temperature thermistor on the same micro-machined thermal flow sensing device, the vortex flow meter shall be able to output the fluid temperature as well as the fluid pressure.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: September 4, 2018
    Assignee: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20180172532
    Abstract: The design and manufacture method of a pressure sensor utilizing thermal field sensing with a thermal isolated membrane of a diaphragm structure is disclosed in the present invention. This device is made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of pressure measurement with large dynamic range, high accuracy and high stability during temperature variation. This device is applicable for all types of pressure metrology. The said thermal field pressure sensing device operates with thermistors on a membrane of the diaphragm structure made of silicon nitride with a heat isolation cavity underneath or a single side thermal isolated silicon nitride membrane with a reference cavity. This device can be seamlessly integrated with a thermal flow sensor with the same process.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Applicant: Wisenstech Inc.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20170356772
    Abstract: The design and structure of a vortex flow meter with large dynamic range utilizing a micro-machined thermal flow sensing device for simultaneously measurement of volumetric flowrate via vortex street frequency as well as mass flowrate is exhibited in this disclosure. The micro-machined thermal flow sensing device is placed at the central point of a channel inside the bluff body where the channel direction is not perpendicular to the direction of fluid flow in the conduit. The thermal flow sensing device is operating in a time-of-flight principle for acquiring the vortex street frequency such that any surface conditions of the device shall not have significant impact to the measured values. With a temperature thermistor on the same micro-machined thermal flow sensing device, the vortex flow meter shall be able to output the fluid temperature as well as the fluid pressure.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Applicant: Wisenstech Inc.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 9784607
    Abstract: An electronic utility gas meter using MEMS thermal mass flow sensor to measure gas custody transfer data in city gas metering application is disclosed in the present invention. The meter is designed to have its mechanical connectors identical to those of the current diaphragm gas meters while the insertion metrology unit guided channel is placed coaxially in the main flow channel inside the meter body with gas flow conditioning apparatus. The mechanical installation of the electronic utility gas meter then can be fully compatible with the current mechanical utility gas meters, which allows a seamless replacement. The electronic utility gas meter provides gas metrology that significantly improves the accuracy of the city gas metering, and provides additional benefits for data safety, enhanced gas chemical safety, billing alternatives and full data management either locally or remotely.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: October 10, 2017
    Assignee: M-Tech Instrument Corporation Holding Limited
    Inventors: Wai Tung Ivan Wong, Liji Huang, Kowng Shing Ling
  • Patent number: 9752783
    Abstract: The design and assembly of a smart device constituent of a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and an electrically controllable valve for applications in safety enhancement and intermit connectivity for residential or commercial gas range is disclosed in the present invention. The said smart device detects the gas flow at the unattended situations and sends information to the destined mobile devices of the users via the network such that it enables the users to remotely execute actions of either shutting off the gas supply or call for relevant party's immediate attention. The said smart device shall also automatically shut off the gas supply should the transmitted signal to users failed to send feedback signal such that it can prevent the safety incidents due to leakage or overheating or even fires.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: September 5, 2017
    Assignee: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20170241822
    Abstract: An electronic utility gas meter using MEMS thermal mass flow sensor to measure gas custody transfer data in city gas metering application is disclosed in the present invention. The meter is designed to have its mechanical connectors identical to those of the current diaphragm gas meters while the insertion metrology unit guided channel is placed coaxially in the main flow channel inside the meter body with gas flow conditioning apparatus. The mechanical installation of the electronic utility gas meter then can be fully compatible with the current mechanical utility gas meters, which allows a seamless replacement. The electronic utility gas meter provides gas metrology that significantly improves the accuracy of the city gas metering, and provides additional benefits for data safety, enhanced gas chemical safety, billing alternatives and full data management either locally or remotely.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventors: Wai Tung Ivan Wong, Liji Huang, Kowng Shing Ling
  • Publication number: 20170097252
    Abstract: The present invention disclosed a micromachined composite silicon flow sensor that is comprised of calorimetric and anemometric flow sensing elements, time-of-flight sensing elements as well as independent temperature sensing elements on a silicon-on-insulator device where the device layer is used for the thermal isolation membrane. The disclosed composite silicon flow sensor can measure mass flowrate, volumetric flowrate and flow medium temperature simultaneously, from which a full spectrum of flow parameters including flow pressure can be obtained. The sensor can be further used to alert any changes in physical properties of flow medium during operation. The disclosed manufacture process details the micromachining process of making such a sensor.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 6, 2017
    Applicant: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20160255878
    Abstract: The design and structure as well as the control scheme of a smart electronic vaporizer device having a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and control electronics that provide the vaporizing process in proportional to the user inhalation flowrate or strength for the best simulation of the experience for traditional cigarette. The device further incorporates a MEMS gas composition sensor that is coupled with the mass flow sensor to measure the user's respiratory health data, including but not limited to asthma status and metabolism related respiratory exchange rate. The device is further capable to relay the data to the designated mobile device and further to the designated cloud for big data process and sharing.
    Type: Application
    Filed: March 5, 2015
    Publication date: September 8, 2016
    Applicant: WISENSTECH INC.
    Inventors: LIJI HUANG, CHIH-CHANG CHEN
  • Publication number: 20160238257
    Abstract: The design and assembly of a smart device constituent of a micro-machined (a.k.a. MEMS, Micro Electro Mechanical Systems) mass flow sensor and an electrically controllable valve for applications in safety enhancement and intermit connectivity for residential or commercial gas range is disclosed in the present invention. The said smart device detects the gas flow at the unattended situations and sends information to the destined mobile devices of the use via the network such that it enables the users to remotely execute actions of either shutting off the gas supply or call for relevant party's immediate attention. The said smart device shall also automatically shut off the gas supply should the transmitted signal to users failed to send feedback signal such that it can prevent the safety incidents due to leakage or overheating or even fires.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Applicant: WISENSTECH INC.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 9360357
    Abstract: The design and manufacture method of a silicon mass flow sensor made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of gas flow measurement with highly humidified or liquid vapors is disclosed in the present invention. The said silicon mass flow sensor operates with an embedded heater and an adjacent control temperature sensor beneath the integrated calorimetric and thermal dissipative sensing thermistors. When the condensation takes place at the surface of the said silicon mass flow sensor, the embedded heater shall be turned on to elevate the temperature of the supporting membrane or substrate for the sensing thermistors. The elevated temperature shall be adjusted to above the vaporization temperature with the feedback data of the adjacent temperature sensor such that the surface condensation due to the presence of the liquid vapors in a gas flow can be effectively eliminated.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: June 7, 2016
    Assignee: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 9354197
    Abstract: The design and manufacture method of an oxygen concentration sensor made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of oxygen measurement with fast response time and low power consumption is disclosed in the present invention. The said silicon oxygen concentration sensor operates with an yttrium stabilized zirconia oxide amperometric cell supported on a membrane made of silicon nitride with a heat isolation cavity underneath or a silicon nitride membrane with silicon plug for mechanical strength enforcement.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 31, 2016
    Assignee: Wisenstech Ltd.
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 9109935
    Abstract: This invention is related to an apparatus which incorporates a microfabricated silicon mass flow sensor to measure city gas flow rate in a medium pressure range for utility industry which is dominated by conventional mechanical meters such as turbine and rotary meters. The microfabricated mass flow sensor is so called micro-electro-mechanical systems (a.k.a. MEMS) device. Due to the small feature size of micro scale for MEMS mass flow sensor, the invented apparatus includes many advantages such as low power consumption, compact package, high reliability and extended dynamic measurement range. This apparatus is also provided with a stable flow conditioning to achieve a desired dynamic range capability. Furthermore, because of the high accuracy characteristic, the apparatus in this invention could be applied for custody transfer or tariff in utility industry as well.
    Type: Grant
    Filed: October 28, 2012
    Date of Patent: August 18, 2015
    Assignee: M-Tech Instrument Corporation (holding) Limited
    Inventors: Xiangyou Yang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
  • Patent number: 8994552
    Abstract: An all-electronic utility gas meter using with micromachined (a.k.a. MEMS Micro Electro Mechanical Systems) silicon sensor to measure gas metrology data for custody transfer or tariff in city gas metering application is disclosed in the present invention. The meter has two separate metrology units. One of the units is located in the main flow channel with the insertion probing configuration while the other is configured as a bypass unit assembly with the main metrology unit. The bypass metrology unit can perform independent metrology tasks and can be exchanged onsite during service, maintenance or repair without dismantle the meter from the service pipeline. The bypass metrology unit also can be used to compare the measured data from time to time and performance self-diagnosis that shall help the performance and data authentication during the meter field service. Both of the units can be powered by battery or external sources.
    Type: Grant
    Filed: October 28, 2012
    Date of Patent: March 31, 2015
    Assignee: M-tech Instrument Corporation (Holding) Limited
    Inventors: Changming Jiang, Yong Feng, Sugang Jiang, Chih-Chang Chen, Liji Huang
  • Patent number: 8950253
    Abstract: A silicon mass flow sensor manufacture process that enables the backside contacts and eliminates the conventional front side wire binding process, and the assembly of such a mass flow sensor is disclosed in the present invention. The achieved assembly enhances the reliability by eliminating the binding wire exposure to the flow medium that may lead to detrimental failure due to the wire shortage or breakage while the miniature footprint could be maintained. The assembly further reduces flow instability from the flow sensor package including the bump of wire sealing. The invented mass flow sensor assembly can be a flow sensor module if the supporting sensor carrier is pre-designed with the control electronics. Without the control electronics, the said mass flow sensor assembly is easy to install into desired flow channels and connect to the external control electronics.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: February 10, 2015
    Assignee: M-Tech Instrument Corporation (Holding) Limited
    Inventors: Liji Huang, Chih-Chang Chen
  • Patent number: 8943888
    Abstract: This invention is related to a microfabricated microelectromechanical systems (a.k.a. MEMS) silicon thermal mass flow sensor integrated with a micromachined thermopile temperature sensor as a flow inception detection sensor. The micromachined thermopile sensor is used to detect the inception of mass flow and therefore to trigger the operation of mass flow sensor from its hibernating mode. By this method, the battery-operated flow speed measuring apparatus can save great deal of electricity and significantly extend the life span of battery. A new design of micromachined thermopile sensor with serpentine shape is used to reduce the complexity of microfabrication process and to increase the flexibility and options for material selection. In order to enhance the sensitivity of the thermopile temperature sensor, a method to maximize the quantity of the junctions is provided as well.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: February 3, 2015
    Assignee: M-Tech Instrument Corporation (Holding) Limited
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20140318960
    Abstract: The design and manufacture method of an oxygen concentration sensor made with silicon micromachining (a.k.a. MEMS, Micro Electro Mechanical Systems) process for applications of oxygen measurement with fast response time and low power consumption is disclosed in the present invention. The said silicon oxygen concentration sensor operates with an yttrium stabilized zirconia oxide amperometric cell supported on a membrane made of silicon nitride with a heat isolation cavity underneath or a silicon nitride membrane with silicon plug for mechanical strength enforcement.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: WISENSTECH INC.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20140283595
    Abstract: The design and manufacture method of a silicon mass flow sensor made with silicon Micromachining MEMS, Micro Electro Mechanical Systems) process for applications of gas flow measurement with highly humidified or liquid vapors is disclosed in the present invention. The said silicon mass flow sensor operates with an embedded heater and an adjacent control temperature sensor beneath the integrated calorimetric and thermal dissipative sensing thermistors. When the condensation takes place at the surface of the said silicon mass flow sensor, the embedded heater shall be turned on to elevate the temperature of the supporting membrane or substrate for the sensing thermistors. The elevated temperature shall be adjusted to above the vaporization temperature with the feedback data of the adjacent temperature sensor such that the surface condensation due to the presence of the liquid vapors in a gas flow can be effectively eliminated.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 25, 2014
    Applicant: WISENSTECH INC.
    Inventors: Liji Huang, Chih-Chang Chen
  • Publication number: 20140268440
    Abstract: This invention relates to a micromachined ESD protection device and its microfabrication method for light emitting diode (LEDs) chips. The LEDs is coupled to the ESD protection device in a shunt connection to absorb and eliminate the electrostatic charges induced by human contact or other voltage spike sources. The ESD protection circuit can prevent the LED from burning down and extend its lifespan. By using a thick polyimide layer as the dielectric film for capacitors in the micromachined ESD protection device at the current invention has the advantages with high breakdown voltage compared to other ESD protection circuits. And furthermore, the device in the current invention is easy for mass production with low manufacturing cost. Another embodiment of the present invention is that the multiple-array arrangement in current micromachined ESD protection device could greatly enhance the liability due to multiple-protection and thus to provide the possibility of multiple-times usage.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Wisenstech Inc.
    Inventors: Chih-Chang Chen, Liji Huang