Patents by Inventor LIJIAN WANG

LIJIAN WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250080259
    Abstract: A method for designing a time-domain non-stationary V2V MIMO communication channel emulator includes determining basic parameters for the V2V MIMO communication channel; generating a V2V 2D time-domain non-stationary communication channel environment, by using a MATLAB, that is, the numbers of the scatterers and the positions of the scatterers and the like; importing parameters generated in the previous step into a hardware simulation platform to calculate communication channel parameters for clusters, such as an angle distribution and a power distribution, writing a Verilog code for running, and eventually calculating to obtain a channel impulse response of the time-domain non-stationary V2V MIMO communication channel; and comparing with a statistical characteristic of a theoretical communication channel model, and designing an appropriate hardware diagram of a communication channel emulator.
    Type: Application
    Filed: August 26, 2024
    Publication date: March 6, 2025
    Inventors: Chengxiang WANG, Duoxian HUANG, Lijian XIN, Jie HUANG
  • Publication number: 20250080250
    Abstract: A method for estimating channel parameters of a reconfigurable intelligent surface based on a spherical wave assumption includes the following steps. In Step 1, a signal transmission model of a RIS-assisted near-field communication is constructed based on the spherical wave assumption; in Step 2, channel measurement data in different RIS transmission modes are obtained; in Step 3, a delay, an angle of arrival, an angle of departure, a Doppler shift and a polarization matrix of multipath in channels are estimated based on a space-alternating generalized expectation maximization algorithm, and angle parameters, distance parameters and coupling polarization matrices of the multipath at a RIS end are estimated based on a maximum likelihood principle; and in Step 4, the estimated parameters are updated and iterated subsequently. The method can estimate all important channel parameters in the RIS-assisted near-field communication scenario more accurately.
    Type: Application
    Filed: August 27, 2024
    Publication date: March 6, 2025
    Inventors: Chengxiang WANG, Yingjie XU, Yingzhuo SUN, Jialing HUANG, Lijian XIN, Jie HUANG
  • Patent number: 11242979
    Abstract: An aurora borealis simulation device and an aurora generating method are provided, which relates to the technical field of light simulators and includes: a simulation device main body and an aurora simulation component. A projection window is provided on the simulation device main body. The aurora simulation component comprises: a light-emitting unit; a fixing frame fixedly mounted on an inner wall of the simulation device main body; a radiator arranged on the fixing frame and assembled corresponding to the light-emitting unit; a first light-transmitting component of which one part is provided on the fixing frame and the other part extends toward a side of the projection window and is located between the projection window and the light-emitting unit, and a second light-transmitting component fixedly mounted on the simulation device main body and located within the projection window.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: February 8, 2022
    Assignee: SHENZHEN AIKESI OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Lijian Wang
  • Publication number: 20210372596
    Abstract: An aurora borealis simulation device and an aurora generating method are provided, which relates to the technical field of light simulators and includes: a simulation device main body and an aurora simulation component. A projection window is provided on the simulation device main body. The aurora simulation component comprises: a light-emitting unit; a fixing frame fixedly mounted on an inner wall of the simulation device main body; a radiator arranged on the fixing frame and assembled corresponding to the light-emitting unit; a first light-transmitting component of which one part is provided on the fixing frame and the other part extends toward a side of the projection window and is located between the projection window and the light-emitting unit, and a second light-transmitting component fixedly mounted on the simulation device main body and located within the projection window.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventor: LIJIAN WANG