Patents by Inventor Lili Ding

Lili Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8709963
    Abstract: A molecular sieve including a basic skeleton of a molecular sieve and magnesium and phosphorus compounds as functional materials supported on the inner surface of the basic skeleton. A method of preparation of a modified molecular sieve including (1) dissolving a magnesium salt in water to obtain a magnesium salt solution; (2) dissolving phosphoric acid in water to obtain a phosphoric acid solution; (3) adding a molecular sieve to the magnesium salt solution, stirring, standing, drying for dehydration, and baking; and (4) adding a modified molecular sieve with supported magnesium compounds obtained from the step (3) to the phosphoric acid solution, stirring, standing, drying for dehydration, and baking to obtain a modified molecular sieve. The modified molecular sieve has high selectivity for ammonia nitrogen in wastewater.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: April 29, 2014
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Tao Zhang, Lili Ding
  • Patent number: 8702992
    Abstract: A continuous flow reactor, including a cylindrical coagulation crystallizer, a funnel type protective baffle for static settling, and a conical static settler. A lower end surface of the cylindrical coagulation crystallizer is connected with an upper end surface of the conical static settler, and the funnel type protective baffle for static settling is connected with an inner wall of the cylindrical coagulation crystallizer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 22, 2014
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Qiucheng Li, Tao Zhang, Lili Ding, Ke Xu, Xinkun Ren
  • Publication number: 20140097137
    Abstract: A coupling bioreactor in the form of a tower type seal structure filled with a suspended carrier. A water inlet pipe, an air inlet pipe, and a first microporous aerator are arranged at the bottom of the coupling reactor. The water inlet pipe is connected to a water distributor. The air inlet pipe is connected to the first microporous aerator. A gas inlet pipe and a second microporous aerator are arranged at the middle part of the coupling bioreactor and are connected with each other. An annular overflow weir is arranged at the upper part of the coupling bioreactor and is connected to a water outlet pipe. A gas outlet pipe is arranged at the top of the coupling bioreactor. The ratio of the height to the diameter of the coupling bioreactor is between 3 and 10.
    Type: Application
    Filed: June 5, 2013
    Publication date: April 10, 2014
    Inventors: Hongqiang REN, Ke XU, Lili DING, Jinju GENG
  • Patent number: 8329040
    Abstract: A new method for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: introducing coking wastewater into a reaction pool into which magnesium and phosphate are added; adding sodium hydroxide to regulate the PH of the mixture around 9.0-10.5; separating the supernatant and the precipitate after proper agitation and natural precipitation; dehydrating the precipitate and then adding alkaline fly ash, water to the dehydrated precipitate and stirring the mixture; decomposing the mixture with heating and absorbing the ammonia gas thereof produced with acidic solution. In consideration of high concentration of ammonia nitrogen in coking wastewater, this invention aims at quick and efficient treatment. The concentration of ammonia nitrogen in treated water meets the highest discharge standard stipulated in [China National] Integrated Wastewater Discharge Standard (GB8978-96).
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 11, 2012
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Lili Ding, Tao Zhang
  • Patent number: 8273249
    Abstract: A new method that integrates electrochemical oxidation and flocculation processes for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: first, adjusting the PH of coking wastewater and adding Fe2+ into the wastewater; then leading the wastewater containing Fe2+ through such 5 areas as pulsed high-voltage discharge oxidation area, pulsed high-frequency DC electrolytic oxidation area, microbubble oxidation area, flocculation area and precipitation area in succession. High-voltage pulse and high-frequency pulse are two different mechanisms for achieving strong oxidation. With help of both solid and liquid catalysts, these two oxidations can work synergistically. The recalcitrant organic chemicals are effectively destroyed and satisfactorily removed out of wastewater. The high-concentration coking waster pretreated with this method will meet Chinese highest discharge standard as long as the routine biochemical treatment is applied thereafter.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: September 25, 2012
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Yunjun Yang, Lili Ding, Xiaolei Shi
  • Publication number: 20120223447
    Abstract: A contact reaction tower, including: a central cylinder; and an outer cylinder. Lift pipes and a water inlet pipe(s) are installed in the central cylinder, reflux windows are formed on the wall of the central cylinder, and the water flow circulation between the central cylinder and the outer cylinder is realized through the lift pipes, the water inlet pipe(s), and the reflux windows, such that the water flow internal circulation of the whole contact reaction tower is realized. The contact reaction tower is sealed in its entirety from the outside environment, and a gas guide pipe is installed at the top of the contact reaction tower.
    Type: Application
    Filed: May 18, 2012
    Publication date: September 6, 2012
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang REN, Ke XU, Lili DING, Xinkun REN, Yanru WANG
  • Publication number: 20120211433
    Abstract: A continuous flow reactor, including a cylindrical coagulation crystallizer, a funnel type protective baffle for static settling, and a conical static settler. A lower end surface of the cylindrical coagulation crystallizer is connected with an upper end surface of the conical static settler, and the funnel type protective baffle for static settling is connected with an inner wall of the cylindrical coagulation crystallizer.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 23, 2012
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang REN, Qiucheng LI, Tao ZHANG, Lili DING, Ke XU, Xinkun REN
  • Publication number: 20120205317
    Abstract: A method for treatment of coke wastewater, including (1) introducing wastewater into a regulating reservoir into which an acid liquor is added until the pH value of the wastewater ranges between about 5.5 and about 6.5; (2) introducing the wastewater into a three-dimensional electrode treatment device for electrolysis treatment; and (3) introducing the wastewater into a coagulation reaction tank into which an alkali liquor is added until the pH value of the wastewater ranges between 8 and 10, and as a coagulant polysilicate ferric magnesium is added into the wastewater for a hybrid reaction of between 5 and 15 mins; allowing the wastewater to flow into a sedimentation basin for plain sedimentation of between 4 and 6 hrs; and extracting a supernatant liquor to yield a processed effluent.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Inventors: Hongqiang REN, Xiaolei SHI, Lili DING, Ming LIU, Xiaobing HU
  • Publication number: 20120208262
    Abstract: A biotrickling filter for treating waste gas including a waste gas inlet, packing layers, a spray pipe, a spray liquid storage tank, and a waste gas outlet. The waste gas passes through a first packing layer after passing through the waste gas inlet and then passes through a second packing layer after changing the flow direction at the bottom of the first packing layer; the flow directions of the waste gas in the first packing layer and the second packing layer are opposite to form a cross-flow structure; the two different flow directions of the waste gas form a cross-flow unit, and two or more cross-flow units form the biotrickling filter.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Inventors: Hongqiang REN, Yonggang WU, Lili DING
  • Patent number: 8216471
    Abstract: An integrated bioreactor and its applications as well as a method for treatment of highly-concentrated organic wastewater using the same. The integrated bioreactor with a concentric columnar structure includes an inner layer and an outer layer, in which the inner layer is an upflow anaerobic sludge blanket (UASB) and the outer layer is a moving bed biofilm reactor (MBBR). The effluent of the MBBR is recycled into UASB via a reflux pump mounted between a water tank and the integrated bioreactor. A water outlet of the UASB is arranged with an on-line pH monitor and a mechanical agitation device is arranged on the top of a bottom water distributor. The bioreactor is low in cost, features friendly maintenance, stable operation, and high degree of automation, and can be applied under low temperature.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 10, 2012
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Ke Xu, Lili Ding, Jicheng Xie, Xinkun Ren
  • Publication number: 20120171447
    Abstract: A molecular sieve including a basic skeleton of a molecular sieve and magnesium and phosphorus compounds as functional materials supported on the inner surface of the basic skeleton. A method of preparation of a modified molecular sieve including (1) dissolving a magnesium salt in water to obtain a magnesium salt solution; (2) dissolving phosphoric acid in water to obtain a phosphoric acid solution; (3) adding a molecular sieve to the magnesium salt solution, stirring, standing, drying for dehydration, and baking; and (4) adding a modified molecular sieve with supported magnesium compounds obtained from the step (3) to the phosphoric acid solution, stirring, standing, drying for dehydration, and baking to obtain a modified molecular sieve. The modified molecular sieve has high selectivity for ammonia nitrogen in wastewater.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Inventors: Hongqiang REN, Tao ZHANG, Lili DING
  • Publication number: 20120138527
    Abstract: An integrated bioreactor and its applications as well as a method for treatment of highly-concentrated organic wastewater using the same. The integrated bioreactor with a concentric columnar structure includes an inner layer and an outer layer, in which the inner layer is an upflow anaerobic sludge blanket (UASB) and the outer layer is a moving bed biofilm reactor (MBBR). The effluent of the MBBR is recycled into UASB via a reflux pump mounted between a water tank and the integrated bioreactor. A water outlet of the UASB is arranged with an on-line pH monitor and a mechanical agitation device is arranged on the top of a bottom water distributor. The bioreactor is low in cost, features friendly maintenance, stable operation, and high degree of automation, and can be applied under low temperature.
    Type: Application
    Filed: September 28, 2011
    Publication date: June 7, 2012
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang REN, Ke XU, Lili DING, Jicheng XIE, Xinkun REN
  • Publication number: 20110220585
    Abstract: A new method that integrates electrochemical oxidation and flocculation processes for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: first, adjusting the PH of coking wastewater and adding Fe2+ into the wastewater; then leading the wastewater containing Fe2+ through such 5 areas as pulsed high-voltage discharge oxidation area, pulsed high-frequency DC electrolytic oxidation area, microbubble oxidation area, flocculation area and precipitation area in succession. High-voltage pulse and high-frequency pulse are two different mechanisms for achieving strong oxidation. With help of both solid and liquid catalysts, these two oxidations can work synergistically. The recalcitrant organic chemicals are effectively destroyed and satisfactorily removed out of wastewater. The high-concentration coking waster pretreated with this method will meet Chinese highest discharge standard as long as the routine biochemical treatment is applied thereafter.
    Type: Application
    Filed: July 25, 2008
    Publication date: September 15, 2011
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang Ren, Yunjun Yang, Lili Ding, Xiaolei Shi
  • Publication number: 20110203998
    Abstract: A new method for removing ammonia nitrogen in coking wastewater is disclosed in this invention. It comprises steps as follow: introducing coking wastewater into a reaction pool into which magnesium and phosphate are added; adding sodium hydroxide to regulate the PH of the mixture around 9.0-10.5; separating the supernatant and the precipitate after proper agitation and natural precipitation; dehydrating the precipitate and then adding alkaline fly ash, water to the dehydrated precipitate and stirring the mixture; decomposing the mixture with heating and absorbing the ammonia gas thereof produced with acidic solution. In consideration of high concentration of ammonia nitrogen in coking wastewater, this invention aims at quick and efficient treatment. The concentration of ammonia nitrogen in treated water meets the highest discharge standard stipulated in [China National] Integrated Wastewater Discharge Standard (GB8978-96).
    Type: Application
    Filed: July 25, 2008
    Publication date: August 25, 2011
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang Ren, Lili Ding, Tao Zhang
  • Patent number: 7988857
    Abstract: A method for treating mixed wastewater from pharmaceutical chemical industry parks including introducing mixed wastewater into a regulation tank for regulation of water flow and water quality, and then into a hydrolysis tank having a hanged filler and employing upflow water distribution, into an anaerobic tank employing upflow water distribution, into a moving bed biofilm reactor having a suspended filler and an aeration device at the bottom thereof, into a biological aerated filter including a ceramic filler, and finally treating using coagulating precipitation process. The final effluent has less than 100 mg/L COD.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 2, 2011
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Lei Ge, Feifei Wang, Lili Ding
  • Patent number: 7935256
    Abstract: A method for the treatment of waste water from florfenicol production is provided, which mainly comprises the steps as follows: adding iron chips or steel slag to waste water from a copper salt workshop, regulating the pH value, filtering, then adding limestone, lime or Ca(OH)2 and having a solid-liquid separation; blending the treated waste water and waste water from a splitting workshop, oxidizing the residual reductive matter by ozone and removing NH3-N by blowing; blending the treated water and waste water from esterifying or florfenicol workshops and diluting the blended water, adding phosphate and microelement, regulating the pH value, then having an anaerobic treatment in an anaerobic reactor; diluting the treated waste water, then having an aerobic treatment in an aerobic reactor.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: May 3, 2011
    Assignee: Nanjing University
    Inventors: Hongqiang Ren, Lili Ding, Bingqing Xin
  • Publication number: 20110079554
    Abstract: A method for treating mixed wastewater from pharmaceutical chemical industry parks including introducing mixed wastewater into a regulation tank for regulation of water flow and water quality, and then into a hydrolysis tank having a hanged filler and employing upflow water distribution, into an anaerobic tank employing upflow water distribution, into a moving bed biofilm reactor having a suspended filler and an aeration device at the bottom thereof, into a biological aerated filter including a ceramic filler, and finally treating using coagulating precipitation process. The final effluent has less than 100 mg/L COD.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang REN, Lei GE, Feifei WANG, Lili DING
  • Publication number: 20090289007
    Abstract: A method for the treatment of waste water from florfenicol production is provided, which mainly comprises the steps as follows: adding iron chips or steel slag to waste water from a copper salt workshop, regulating the pH value, filtering, then adding limestone, lime or Ca(OH)2 and having a solid-liquid separation; blending the treated waste water and waste water from a splitting workshop, oxidizing the residual reductive matter by ozone and removing NH3-N by blowing; blending the treated water and waste water from esterifying or florfenicol workshops and diluting the blended water, adding phosphate and microelement, regulating the pH value, then having an anaerobic treatment in an anaerobic reactor; diluting the treated waste water, then having an aerobic treatment in an aerobic reactor.
    Type: Application
    Filed: November 28, 2006
    Publication date: November 26, 2009
    Applicant: NANJING UNIVERSITY
    Inventors: Hongqiang Ren, Lili Ding, Bingqing Xin