Patents by Inventor Lilly SU

Lilly SU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948999
    Abstract: A device includes a first semiconductor fin, a second semiconductor fin, a source/drain epitaxial structure, a semiconductive cap, and a contact. The first semiconductor fin and the second semiconductor fin are over a substrate. The source/drain epitaxial structure is connected to the first semiconductor fin and the second semiconductor fin. The source/drain epitaxial structure includes a first protruding portion and a second protruding portion aligned with the first semiconductor fin and the second semiconductor fin, respectively. The semiconductive cap is on and in contact with the first protruding portion and the second protruding portion. A top surface of the semiconductive cap is lower than a top surface of the first protruding portion of the source/drain epitaxial structure. The contact is electrically connected to the source/drain epitaxial structure and covers the semiconductive cap.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Publication number: 20220359733
    Abstract: A device includes a first semiconductor fin, a second semiconductor fin, a source/drain epitaxial structure, a semiconductive cap, and a contact. The first semiconductor fin and the second semiconductor fin are over a substrate. The source/drain epitaxial structure is connected to the first semiconductor fin and the second semiconductor fin. The source/drain epitaxial structure includes a first protruding portion and a second protruding portion aligned with the first semiconductor fin and the second semiconductor fin, respectively. The semiconductive cap is on and in contact with the first protruding portion and the second protruding portion. A top surface of the semiconductive cap is lower than a top surface of the first protruding portion of the source/drain epitaxial structure. The contact is electrically connected to the source/drain epitaxial structure and covers the semiconductive cap.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru LEE, Chii-Horng LI, Chien-I KUO, Heng-Wen TING, Jung-Chi TAI, Lilly SU, Yang-Tai HSIAO
  • Patent number: 11430878
    Abstract: A method includes etching a semiconductor substrate to form a plurality of semiconductor fins. The semiconductor fins are etched to form a recess. An epitaxy structure is grown in the recess. The epitaxy structure has a W-shape cross section. A capping layer is formed over the epitaxy structure. The capping layer is at least conformal to a sidewall of the epitaxy structure. The capping layer is etched to expose a top surface of the epitaxy structure. A first portion of the capping layer remains over the sidewall of the epitaxy structure after etching the capping layer. A contact is formed in contact with the exposed top surface of the epitaxy structure and the first portion of the capping layer.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Patent number: 11257951
    Abstract: A method of manufacturing a semiconductor device includes forming a first gate stack over a substrate. The method further includes etching the substrate to define a cavity. The method further includes growing a first epitaxial (epi) material in the cavity, wherein the first epi material includes a first upper surface having a first crystal plane. The method further includes growing a second epi material on the first epi material, wherein the second epi material includes a second upper surface having the first crystal plane. The method further includes treating the second epi material, wherein treating the second epi material comprises causing the second upper surface to transform to a second crystal plane different from the first crystal plane.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: February 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly Su, Chii-Horng Li, Ming-Hua Yu, Pang-Yen Tsai, Tze-Liang Lee, Yen-Ru Lee
  • Publication number: 20210083115
    Abstract: A method of manufacturing a semiconductor device includes forming a first gate stack over a substrate. The method further includes etching the substrate to define a cavity. The method further includes growing a first epitaxial (epi) material in the cavity, wherein the first epi material includes a first upper surface having a first crystal plane. The method further includes growing a second epi material on the first epi material, wherein the second epi material includes a second upper surface having the first crystal plane. The method further includes treating the second epi material, wherein treating the second epi material comprises causing the second upper surface to transform to a second crystal plane different from the first crystal plane.
    Type: Application
    Filed: November 4, 2020
    Publication date: March 18, 2021
    Inventors: Lilly SU, Chii-Horng LI, Ming-Hua YU, Pang-Yen TSAI, Tze-Liang LEE, Yen-Ru LEE
  • Publication number: 20200381539
    Abstract: A method includes etching a semiconductor substrate to form a plurality of semiconductor fins. The semiconductor fins are etched to form a recess. An epitaxy structure is grown in the recess. The epitaxy structure has a W-shape cross section. A capping layer is formed over the epitaxy structure. The capping layer is at least conformal to a sidewall of the epitaxy structure. The capping layer is etched to expose a top surface of the epitaxy structure. A first portion of the capping layer remains over the sidewall of the epitaxy structure after etching the capping layer. A contact is formed in contact with the exposed top surface of the epitaxy structure and the first portion of the capping layer.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru LEE, Chii-Horng LI, Chien-I KUO, Heng-Wen TING, Jung-Chi TAI, Lilly SU, Yang-Tai HSIAO
  • Patent number: 10854602
    Abstract: A semiconductor device includes a semiconductor substrate, at least one first isolation structure, at least one second isolation structure, a source structure, a drain structure and a plurality of semiconductor fins. The first isolation structure and the second isolation structure are located on the semiconductor substrate. The source structure is located on the semiconductor substrate and the first isolation structure, in which at least one first gap is located between the source structure and the first isolation structure. The drain structure is located on the semiconductor substrate and the second isolation structure, in which at least one second gap is located between the drain structure and the second isolation structure. The semiconductor fins protrude from the semiconductor substrate, in which the semiconductor fins are spaced apart from each other, and connect the source structure and the drain structure.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Ying-Wei Li
  • Patent number: 10854748
    Abstract: A semiconductor device includes a first gate stack over a substrate. The semiconductor device further includes a first epitaxial (epi) material in the substrate on a first side of the first gate stack. The first epi material includes a first upper surface having a first crystal plane. The semiconductor device further includes a second epi material in the substrate on a second side of the first gate stack opposite the first side. The second epi material includes a second upper surface having a second crystal plane, and the first crystal plane is different from the second crystal plane.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly SU, Pang-Yen Tsai, Tze-Liang Lee, Chii-Horng Li, Yen-Ru Lee, Ming-Hua Yu
  • Patent number: 10749013
    Abstract: A semiconductor device includes a plurality of semiconductor fins, an epitaxy structure, a capping layer, and a contact. The epitaxy structure adjoins the semiconductor fins. The epitaxy structure has a plurality of protrusive portions. The capping layer is over a sidewall of the epitaxy structure. The contact is in contact with the epitaxy structure and the capping layer. The contact has a portion between the protrusive portions. The portion of the contact between the protrusive portions has a bottom in contact with the epitaxy structure.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Publication number: 20190164964
    Abstract: A semiconductor device includes a semiconductor substrate, at least one first isolation structure, at least one second isolation structure, a source structure, a drain structure and a plurality of semiconductor fins. The first isolation structure and the second isolation structure are located on the semiconductor substrate. The source structure is located on the semiconductor substrate and the first isolation structure, in which at least one first gap is located between the source structure and the first isolation structure. The drain structure is located on the semiconductor substrate and the second isolation structure, in which at least one second gap is located between the drain structure and the second isolation structure. The semiconductor fins protrude from the semiconductor substrate, in which the semiconductor fins are spaced apart from each other, and connect the source structure and the drain structure.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 30, 2019
    Inventors: Chii-Horng LI, Chien-I KUO, Lilly SU, Chien-Chang SU, Ying-Wei LI
  • Publication number: 20190051737
    Abstract: A semiconductor device includes a plurality of semiconductor fins, an epitaxy structure, a capping layer, and a contact. The epitaxy structure adjoins the semiconductor fins. The epitaxy structure has a plurality of protrusive portions. The capping layer is over a sidewall of the epitaxy structure. The contact is in contact with the epitaxy structure and the capping layer. The contact has a portion between the protrusive portions. The portion of the contact between the protrusive portions has a bottom in contact with the epitaxy structure.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru LEE, Chii-Horng LI, Chien-I KUO, Heng-Wen TING, Jung-Chi TAI, Lilly SU, Yang-Tai HSIAO
  • Patent number: 10177143
    Abstract: A semiconductor device includes a semiconductor substrate, at least one first isolation structure, at least one second isolation structure, a source structure, a drain structure and a plurality of semiconductor fins. The first isolation structure and the second isolation structure are located on the semiconductor substrate. The source structure is located on the semiconductor substrate and the first isolation structure, in which at least one first gap is located between the source structure and the first isolation structure. The drain structure is located on the semiconductor substrate and the second isolation structure, in which at least one second gap is located between the drain structure and the second isolation structure. The semiconductor fins protrude from the semiconductor substrate, in which the semiconductor fins are spaced apart from each other, and connect the source structure and the drain structure.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: January 8, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Ying-Wei Li
  • Patent number: 10170370
    Abstract: A method of forming a semiconductor device includes forming fin regions on a substrate, forming a patterned polysilicon structure over the fin regions, and etching back portions of the fin regions to form recessed fin regions. The method further includes forming a merged epitaxial region on the recessed fin regions and forming a capping layer on the merged epitaxial region using an etching gas and a deposition gas. The forming of the capping layer may include epitaxially growing a material of the capping layer faster along a first crystal direction of the capping layer than a second crystal direction of the capping layer by adjusting a ratio of a concentration of a first element in the etching gas to a concentration of a second element in the deposition gas, the first and second elements being different from each other, the first and second crystal directions being different from each other.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: January 1, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wen Cheng, Chii-Horng Li, Lilly Su, Tuoh Bin Ng
  • Publication number: 20180315660
    Abstract: A method of forming a semiconductor device includes forming fin regions on a substrate, forming a patterned polysilicon structure over the fin regions, and etching back portions of the fin regions to form recessed fin regions. The method further includes forming a merged epitaxial region on the recessed fin regions and forming a capping layer on the merged epitaxial region using an etching gas and a deposition gas. The forming of the capping layer may include epitaxially growing a material of the capping layer faster along a first crystal direction of the capping layer than a second crystal direction of the capping layer by adjusting a ratio of a concentration of a first element in the etching gas to a concentration of a second element in the deposition gas, the first and second elements being different from each other, the first and second crystal directions being different from each other.
    Type: Application
    Filed: April 23, 2018
    Publication date: November 1, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wen CHENG, Chii-Horng Li, Lilly Su, Tuoh Bin Ng
  • Patent number: 10103249
    Abstract: A semiconductor device includes a semiconductor substrate, a plurality of semiconductor fins and a source/drain structure. The semiconductor fins and the source/drain structure are located on the semiconductor substrate, and the source/drain structure is connected to the semiconductor fins. The source/drain structure has a top portion with a W-shape cross section for forming a contact landing region. The semiconductor device may further include a plurality of capping layers located on a plurality of recessed portions of the top portion.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 16, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Yang-Tai Hsiao
  • Patent number: 9953875
    Abstract: A method of forming a semiconductor device includes forming fin regions on a substrate, forming a patterned polysilicon structure over the fin regions, and etching back portions of the fin regions to form recessed fin regions. The method further includes forming a merged epitaxial region on the recessed fin regions and forming a capping layer on the merged epitaxial region using an etching gas and a deposition gas. The forming of the capping layer may include epitaxially growing a material of the capping layer faster along a first crystal direction of the capping layer than a second crystal direction of the capping layer by adjusting a ratio of a concentration of a first element in the etching gas to a concentration of a second element in the deposition gas, the first and second elements being different from each other, the first and second crystal directions being different from each other.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Cheng-Wen Cheng, Chii-Horng Li, Lilly Su, Tuoh Bin Ng
  • Publication number: 20180108777
    Abstract: A semiconductor device includes a first gate stack over a substrate. The semiconductor device further includes a first epitaxial (epi) material in the substrate on a first side of the first gate stack. The first epi material includes a first upper surface having a first crystal plane. The semiconductor device further includes a second epi material in the substrate on a second side of the first gate stack opposite the first side. The second epi material includes a second upper surface having a second crystal plane, and the first crystal plane is different from the second crystal plane.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 19, 2018
    Inventors: Lilly SU, Pang-Yen TSAI, Tze-Liang LEE, Chii-Horng LI, Yen-Ru LEE, Ming-Hua YU
  • Patent number: 9905641
    Abstract: A semiconductor device includes a substrate, at least one first isolation structure, at least two second isolation structure, and an epitaxy structure. The substrate has a plurality of semiconductor fins therein. The first isolation structure is disposed between the semiconductor fins. The semiconductor fins are disposed between the second isolation structures, and the second isolation structures extend into the substrate further than the first isolation structure. The epitaxy structure is disposed on the semiconductor fins. At least one void is present between the first isolation structure and the epitaxy structure.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: February 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ru Lee, Chii-Horng Li, Chien-I Kuo, Heng-Wen Ting, Jung-Chi Tai, Lilly Su, Tzu-Ching Lin
  • Patent number: 9842930
    Abstract: A semiconductor device includes a first gate stack and a second gate stack over a substrate, an isolation structure in the substrate, a first epitaxial (epi) material in the substrate between the first gate stack and the isolation structure, and a second epi material in the substrate between the first gate stack and the second gate stack. The first gate stack is between the isolation structure and the second gate stack. The first epi material includes a first upper surface having a first crystal plane. The second epi material includes a second upper surface having a second crystal plane and a third upper surface having a third crystal plane, and first crystal plane is different from both the second crystal plane and the third crystal plane.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: December 12, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lilly Su, Pang-Yen Tsai, Tze-Liang Lee, Chii-Horng Li, Yen-Ru Lee, Ming-Hua Yu
  • Patent number: 9831343
    Abstract: A semiconductor device having n-type field-effect-transistor (NFET) structure and a method of fabricating the same are provided. The NFET structure of the semiconductor device includes a silicon substrate, at least one source/drain portion and a cap layer. The source/drain portion can be disposed within the silicon substrate, and the source/drain portion comprises at least one n-type dopant-containing portion. The cap layer overlies and covers the source/drain portion, and the cap layer includes silicon carbide (SiC) or silicon germanium (SiGe) with relatively low germanium concentration, thereby preventing n-type dopants in the at least one n-type dopant-containing portion of the source/drain portion from being degraded after sequent thermal and cleaning processes.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 28, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chii-Horng Li, Chien-I Kuo, Lilly Su, Chien-Chang Su, Yi-Kai Tseng, Ying-Wei Li