Patents by Inventor Lily He

Lily He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10103946
    Abstract: In accordance with an embodiment, a system and method provides a messaging service in a multitenant application server environment. Deployable resources are usable within the multitenant application server environment and groupings of resources are defined by resource group templates within a domain. One or more partitions are provided, with each partition providing an administrative and runtime subdivision of the domain that can be associated with a tenant. Java message service (JMS) resources are defined within a resource group template or a resource group, and instantiated within a partition to enable messaging for applications deployed within the partition and between partitions. Integrating JMS in a multitenant application server environment further includes a foreign JMS server feature which maps remotely hosted JMS connection factories and JMS destinations into a local partition's JNDI, so that bridges and applications in turn gain access to these resources by looking them up in this name-space.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: October 16, 2018
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Dongbo Xiao, Thomas Barnes, David Zhao, Jigang Wang, Lily He, Padmanabha Bhat
  • Patent number: 10045705
    Abstract: Disclosed is a hand-held, medical, multi-channel biological information acquisition mobile terminal system, comprising two signal sensing gloves RL with a cable end embedded therein, for use in acquiring a variety of biological signals comprising multi-channel interconnected ECG, heart sounds, finger blood volume pulse, and skin impedance etc., the signal sensing gloves RL also comprising a signal acquisition device S, a signal transmission device C connected to the signal acquisition device S, and a mobile terminal T connected wirelessly or with a wired connection. The system has the characteristics of low power consumption, small size, low cost and fewer control channels needed for multi-channel connection; and the system can achieve on-site acquisition of a variety of biological information and the mobile function of electronic health records.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: August 14, 2018
    Assignee: DONGGUAN MATHEMATICAL ENGINEERING ACADEMY OF CHINESE MEDICINE AND GUANGZHOU UNIVERSITY OF TRADITIONAL CHINESE MEDICINE AND GUANGZHOU UNIVERSITY OF TRADITIONAL CHINESE MEDICINE
    Inventors: Zhiwei Liang, Zhangjin Su, Lili He, Xiaoping Lai
  • Publication number: 20180113075
    Abstract: The present disclosure provides a method for mapping one or more analytes that contact a biological structure. The method uses surface-enhanced Raman spectroscopy and includes contacting the biological structure and a metallic nanoparticle. The method further includes collecting a spectrum with a Raman spectrometer. The method further includes determining a location of the analyte along at least one of an x-direction, a y-direction and a z-direction on the structure.
    Type: Application
    Filed: October 25, 2017
    Publication date: April 26, 2018
    Inventor: Lili He
  • Publication number: 20180045799
    Abstract: Techniques for optimizing a magnetic resonance imaging (MRI) protocols are described herein. An example method can include receiving one or more MRI scanner settings for an imaging sequence; selecting at least one objective function from a plurality of objective functions; selecting an acquisition train length; selecting a k-space strategy; selecting one or more imaging parameters; and acquiring a magnetic resonance (MR) image using at least one of an optimized k-space strategy, an optimized acquisition train length, or optimized imaging parameters.
    Type: Application
    Filed: March 11, 2016
    Publication date: February 15, 2018
    Inventors: Jinghua WANG, Zhong-lin LU, Nehal PARIKH, Lili HE
  • Publication number: 20170052123
    Abstract: Systems and methods are provided herein for the extraction, detection and measurement of MNPs in complex matrices in particular, the method includes mixing a solution including a predetermined organic substance with a matrix including the metal nanoparticles, the predetermined organic substance adapted to bind to the metal nanoparticles, to facilitate extraction by an organic solvent and to provide a distinct SERS signal, the mixing resulting in a suspension, adding a solution of a predetermined organic extraction solvent to the suspension, extracting and separating the metal nanoparticles; the metal nanoparticles, after extraction, functionalized by binding with the predetermined organic substance, and extracting and separating the metal nanoparticles; the metal nanoparticles, after extraction, functionalized by binding with the predetermined organic substance; and performing SERS imaging on the functionalized metal nanoparticles in order to detect metals nanoparticles.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 23, 2017
    Inventors: Lili He, Baoshan Xing, Huiyuan Guo
  • Publication number: 20160356721
    Abstract: A bacterial detection platform integrating the sensitive SERS technique and the advanced mapping technique. Bacterial cells on the SERS substrate are detected using the mapping technique. The identification is based on the fingerprint of the bacterial SERS spectra. The quantification of the cells is based on the mapping technique. For different applications, silver or gold nanoparticles can be integrated onto a filter membrane for concentration and detection of bacterial cells in water or silver dendrites can be used as the SERS substrate. The SERS substrates are also modified with capturers and fixed in a vessel to concentrate cells from complex liquid matrices.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Applicant: University of Massachusetts
    Inventor: Lili He
  • Patent number: 9325768
    Abstract: A system has at least one requesting application residing upon a requesting application server, a cluster of processing message servers, a resource adapter in the form of executable code being executed by a processor on a first computer, the resource adapter to receive a request from the requesting application; transmit the request to the cluster of processing message servers; monitor processing of the request on the cluster of processing message servers; handling any exception in the processing of the request; and responding to the requesting application when the processing is complete. The system also includes an interposed transaction manager in the form of executable code being executed by a processor, the interposed transaction manager to receive transactional operations associated with the requests, and providing transaction guarantees related to the transactional operations.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 26, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Qiang Liu, Dongbo Xiao, Lily He, Paul Parkinson, Thomas E. Barnes, Jefferey Steidl, Vivekananda Maganty
  • Publication number: 20140350377
    Abstract: Disclosed is a hand-held, medical, multi-channel biological information acquisition mobile terminal system, comprising two signal sensing gloves RL with a cable end embedded therein, for use in acquiring a variety of biological signals comprising multi-channel interconnected ECG, heart sounds, finger blood volume pulse, and skin impedance etc., the signal sensing gloves RL also comprising a signal acquisition device S, a signal transmission device C connected to the signal acquisition device S, and a mobile terminal T connected wirelessly or with a wired connection. The system has the characteristics of low power consumption, small size, low cost and fewer control channels needed for multi-channel connection; and the system can achieve on-site acquisition of a variety of biological information and the mobile function of electronic health records.
    Type: Application
    Filed: September 10, 2012
    Publication date: November 27, 2014
    Inventors: Zhiwei Liang, Zhangjin Su, Lili He, Xiaoping Lai
  • Publication number: 20130290524
    Abstract: A system has at least one requesting application residing upon a requesting application server, a cluster of processing message servers, a resource adapter in the form of executable code being executed by a processor on a first computer, the resource adapter to receive a request from the requesting application; transmit the request to the cluster of processing message servers; monitor processing of the request on the cluster of processing message servers; handling any exception in the processing of the request; and responding to the requesting application when the processing is complete. The system also includes an interposed transaction manager in the form of executable code being executed by a processor, the interposed transaction manager to receive transactional operations associated with the requests, and providing transaction guarantees related to the transactional operations.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 31, 2013
    Applicant: Oracle International Corporation
    Inventors: Qiang Liu, Dongbo Xiao, Lily He, Paul Parkinson, Thomas E. Barnes, Jefferey Steidl, Vivekananda Maganty
  • Publication number: 20130290983
    Abstract: A computer-controlled method of handling proprietary features in a messaging system includes receiving an object from a requesting application, determining that the object invokes proprietary features of a messaging system, accessing a wrapper library and wrapping the object in an appropriate wrapper for the messaging system to produce a wrapped object, the wrapper to preserve the proprietary feature, and transmitting the wrapped object to the messaging system.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 31, 2013
    Applicant: Oracle International Corporation
    Inventors: John Leinaweaver, Jefferey Steidl, Qiang Liu, Dongbo Xiao, Lily He, Vivekananda Maganty
  • Patent number: 8530961
    Abstract: A method for manufacturing compatible vertical double diffused metal oxide semiconductor (VDMOS) transistor and lateral double diffused metal oxide semiconductor (LDMOS) transistor includes: providing a substrate having an LDMOS transistor region and a VDMOS transistor region; forming an N-buried region in the substrate; forming an epitaxial layer on the N-buried layer region; forming isolation regions in the LDMOS transistor region and the VDMOS transistor region; forming a drift region in the LDMOS transistor region; forming gates in the LDMOS transistor region and the VDMOS transistor region; forming PBODY regions in the LDMOS transistor region and the VDMOS transistor region; forming an N-type GRADE region in the LDMOS transistor region; forming an NSINK region in the VDMOS transistor region, where the NSINK region is in contact with the N-buried layer region; forming sources and drains in the LDMOS transistor region and the VDMOS transistor region; and forming a P+ region in the LDMOS transistor region,
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 10, 2013
    Assignee: CSMC Technologies FAB1 Co., Ltd.
    Inventors: Linchun Gui, Le Wang, Zhiyong Zhao, Lili He
  • Publication number: 20120256252
    Abstract: A method for manufacturing compatible vertical double diffused metal oxide semiconductor (VDMOS) transistor and lateral double diffused metal oxide semiconductor (LDMOS) transistor includes: providing a substrate having an LDMOS transistor region and a VDMOS transistor region; forming an N-buried region in the substrate; forming an epitaxial layer on the N-buried layer region; forming isolation regions in the LDMOS transistor region and the VDMOS transistor region; forming a drift region in the LDMOS transistor region; forming gates in the LDMOS transistor region and the VDMOS transistor region; forming PBODY regions in the LDMOS transistor region and the VDMOS transistor region; forming an N-type GRADE region in the LDMOS transistor region; forming an NSINK region in the VDMOS transistor region, where the NSINK region is in contact with the N-buried layer region; forming sources and drains in the LDMOS transistor region and the VDMOS transistor region; and forming a P+ region in the LDMOS transistor region,
    Type: Application
    Filed: October 26, 2010
    Publication date: October 11, 2012
    Inventors: Linchun Gui, Le Wang, Zhiyong Zhao, Lili He