Patents by Inventor Lin-Nan Lee

Lin-Nan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170294996
    Abstract: A high capacity communication system and method, and a high capacity communications configuration system are provided. The high capacity communication system includes a transmitter. The transmitter includes a signal generator to generate a signal including, wherein for a first frame portion extending from zero to ? time the signal is generated per a first color reuse plan of a frequency spectrum and one or more polarizations, and for a second frame portion extending from ? to T the signal is generated per a second color reuse plan of the frequency spectrum and the one or more polarizations; and an RF system to beam the signal concurrently to a first geographic area and a second geographic area.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 12, 2017
    Applicant: Hughes Network Systems, LLC
    Inventors: Lin-Nan LEE, Liping CHEN, Anthony NOERPEL, Stanley E. KAY
  • Patent number: 9768858
    Abstract: A method for efficient retransmission over a satellite network including transmitting data packets to VSATs, receiving retransmission requests for at least one of the data packets from the VSATs, generating a retransmission packet based on the retransmission requests using XOR summing, transmitting the retransmission packet to the plurality of VSATs.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 19, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Chi-Jiun Su, Lin-Nan Lee
  • Patent number: 9716602
    Abstract: An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 25, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20170195450
    Abstract: An approach for opportunistic caching of streaming media data is provided to facilitate efficient use of forward transmission resources of a broadband communications system. The approach includes receiving, by a second communications terminal, a first content response transmitted by a first content server, via a broadcast/multicast communications medium, in response to a first content request of a first client device associated with a first communications terminal, wherein the first content response includes first data content requested by the first client device via the first communications terminal. The approach further comprises determining, by a cache controller of a cache storage device of the second communications terminal, to store at least the first data content of the first content response in the local cache storage device associated with the second communications terminal, wherein the determination to store is based on one or more criteria associated with the first content response.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventors: Chi-Jiun SU, Lin-Nan LEE
  • Publication number: 20170150528
    Abstract: Methods and devices are provided. Devices asynchronously transmit, without diversity, bursts including information encoded using a low rate FEC code having a code rate no higher than ½. A terminal receives transmitted multiple overlapping bursts. The terminal detects and decodes bursts in a window of burst times, performs an iteration of an iterative interference cancellation process, and when at least one burst of at least a portion of the window remains incorrectly decoded, another iteration of the iterative cancellation process is performed as long as a maximum number of repeated iterations has not yet been performed. When all of the bursts in at least the portion of the window are correctly decoded, the window is advanced by an amount of burst time, at least the portion of the window is updated, and the iterations may be repeated. Correctly decoded bursts may be passed to a next process or device.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 25, 2017
    Applicant: HUGHES NETWORK SYSTEMS, LLC
    Inventors: Neal David Becker, Mustafa Eroz, Lin-Nan Lee, Stanley E. Kay
  • Patent number: 9634870
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: April 25, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20160373278
    Abstract: A multiple access scheme is described. A first bit stream is scrambled from a first terminal according to a first scrambling signature. A second bit stream is scrambled from a second terminal according to a second scrambling signature, wherein the first bit stream and the second bit stream are encoded using a low rate code. The first scrambling signature and the second scrambling signature are assigned, respectively, to the first terminal and the second terminal to provide a multiple access scheme.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Mustafa EROZ, Lin-Nan LEE, Lakshmi IYER, Neal BECKER
  • Publication number: 20160373934
    Abstract: A communications terminal comprises an encoder configured to encode a digital data signal to generate an encoded signal, a scrambler configured to scramble the encoded signal based on a scrambling signature, and a modulator configured to modulate resulting data frames for transmission via a random access communications channel. Each frame comprises a data payload, including a block of the scrambled signal, and a header, including a start of frame (SOF) sequence associated with the scrambling signature. Use of the SOF sequence for each frame provides a synchronization reference and serves to designate the associated scrambling signature for decoding the respective data payload. Use of the SOF sequence for each frame further serves to distinguish between the data frame and data frame(s) originating from further communications terminal(s), transmitted via a common time slot of the channel, for which different scrambling signature(s) were used to scramble respective encoded signal(s) thereof.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 22, 2016
    Inventors: Lin-Nan LEE, Liping CHEN, Victor LIAU
  • Publication number: 20160374037
    Abstract: A communications terminal receives a data communications signal via a random access channel. A processor searches for data bursts in a first time-slot that include one of a first set of signature sequences assigned to the first time-slot. When a data burst A in the first time-slot includes one of the first set of signature sequences, the data burst A in the first time-slot is an initial burst of a message from a first communications terminal. The processor determines whether a second time-slot includes a data burst B that includes the one signature sequence. When the second time-slot includes the data burst B, the message is a multi-burst message and that the data burst B is a second burst of the multi-burst message. When the second time-slot does not include the data burst B the message is a single-burst message that has been completed via the first time-slot.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 22, 2016
    Inventors: Lin-Nan LEE, Liping CHEN, Victor LIAU
  • Patent number: 9515723
    Abstract: A signal transmission approach comprises encoding a source signal (comprising source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: December 6, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Patent number: 9467200
    Abstract: A system and method for transmitting wideband signals via a radio communication system adapted for transmitting narrow-band signals is described. A base station is used to transmit and receive a plurality of relatively narrow-band and a plurality of relatively wideband signals. The electromagnetic spectrum available to the plurality of narrow-band signals is selectively shared with the electromagnetic spectrum available to the wideband signals by systematically separating the orthogonal codes and the carrier frequencies used for transmission. The prefixes of the orthogonal codes are preferably mutually exclusive and the carrier frequencies are preferably separated by an offset. The offset may be substantially equal to an integer multiple of the narrow-band signal's chip rate. Alternatively, the offset may be substantially equal to an odd multiple of one half the narrow-band signal's chip rate in which case every other bit of the orthogonally encoded data is inverted.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: October 11, 2016
    Assignee: The DIRECTV Group, Inc.
    Inventors: Feng-Wen Sun, Lin-Nan Lee, Khalid Karimullah
  • Patent number: 9461765
    Abstract: A multiple access scheme is described. A first bit stream is scrambled from a first terminal according to a first scrambling signature. A second bit stream is scrambled from a second terminal according to a second scrambling signature, wherein the first bit stream and the second bit stream are encoded using a low rate code. The first scrambling signature and the second scrambling signature are assigned, respectively, to the first terminal and the second terminal to provide a multiple access scheme.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: October 4, 2016
    Assignee: Hughes Networks Systems, LLC
    Inventors: Mustafa Eroz, Lin-Nan Lee, Lakshmi Iyer, Neal Becker
  • Publication number: 20160248546
    Abstract: A multiple access scheme is described. A first bit stream is scrambled from a first terminal according to a first scrambling signature. A second bit stream is scrambled from a second terminal according to a second scrambling signature, wherein the first bit stream and the second bit stream are encoded using a low rate code. The first scrambling signature and the second scrambling signature are assigned, respectively, to the first terminal and the second terminal to provide a multiple access scheme.
    Type: Application
    Filed: January 16, 2013
    Publication date: August 25, 2016
    Applicant: Hughes Network Systems, LLC
    Inventors: Mustafa EROZ, Lin-Nan LEE, Lakshmi IYER, Neal BECKER
  • Patent number: 9397704
    Abstract: Approaches for satellite data transmissions are provided, which accommodate for periodic signal blockages without packet loss. A data stream is segmented into packets for wireless transmission, wherein the transmission is subject to a periodic blockage, wherein the periodic blockage comprises two blockages occurring within a time period, and each blockage is of a respective duration and recurs at regular intervals based on the time period. A forward error correction outer code is applied to the packets for recovery of data erasures due to the periodic blockage, wherein the application of the outer code comprises applying an error correction code to each of the packets to generate a respective codeblock. Each codeblock is interleaved to prevent erasure of consecutive parity bits within the codeblock. The encoded and interleaved codeblocks are transmitted over a wireless channel, wherein a number of data erasures occur within each codeblock due to the periodic blockage.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: July 19, 2016
    Assignee: Hughes Networks Systems, LLC
    Inventors: Mustafa Eroz, Lin-Nan Lee
  • Patent number: 9391642
    Abstract: An approach for encoding a physical layer (PL) header of a PL data frame is provided. The PL header comprises sixteen information bits ui, (i=0, 1, 2, . . . , 15), and the encoding is based on a convolutional code, whereby, for each information bit, five associated parity bits pi,k, (k=0, 1, 2, 3, 4) are generated, resulting in 80 codebits. The resulting 80 codebits are punctured to form a (16,77) codeword (c0, c1, c2, . . . , c76). The codebits of the (16,77) codeword are repeated to generate a (16,154) physical layer signaling codeword (c0, c0, c1, c1, c2, c2, . . . , c76, c76) for transmission of the PL data frame over a channel of a communications network.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: July 12, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Mustafa Eroz, Yezdi Antia, Lin-Nan Lee
  • Publication number: 20160164702
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 9, 2016
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Publication number: 20160087712
    Abstract: A signal transmission approach comprises encoding a source signal (comprising source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 24, 2016
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Patent number: 9294131
    Abstract: Modulation and coding schemes are provided for improved performance of wireless communications systems to support services and applications for terminals with operational requirements at relatively low ES/N0 ratios. The provided modulation and coding schemes will support current and future communications services and applications for terminals with operational requirements at relatively low ES/N0 ratios, and will provide modulation and coding schemes that offer finer granularity within an intermediate operational range of ES/N0 ratios. The new modulation and coding schemes provide new BCH codes, and low density parity check (LDPC) codes.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 22, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Mustafa Eroz, Lin-Nan Lee
  • Patent number: 9246634
    Abstract: Modulation and coding schemes are provided for improved performance of wireless communications systems to support services and applications for terminals with operational requirements at relatively low Es/N0 ratios. The new modulation and coding schemes provide new BCH codes, low density parity check (LDPC) codes and interleaving methods.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: January 26, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Mustafa Eroz, Lin-Nan Lee
  • Patent number: 9246717
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 26, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee