Patents by Inventor Lin Tung GUEY

Lin Tung GUEY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323371
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: April 6, 2023
    Publication date: October 12, 2023
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20230112986
    Abstract: The invention relates to mRNA therapy for the treatment of Acute Intermittent Porphyria (AIP). mRNAs for use in the invention, when administered in vivo, encode human porphobilinogen deaminase (PBGD), isoforms thereof, functional fragments thereof, and fusion proteins comprising PBGD. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to affect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PBGD expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient PBGD activity in subjects, namely porphobilinogen and aminolevulinate (PBG and ALA).
    Type: Application
    Filed: July 21, 2022
    Publication date: April 13, 2023
    Applicants: ModernaTX, Inc., Fundacion Para La Investigacion Medica Aplicada
    Inventors: Paolo MARTINI, Stephen HOGE, Kerry BENENATO, Vladimir PRESNVAK, Lei JIANG, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Antonio FONTANELLAS ROMA, Pedro BERRAONDO LOPEZ, Matias Antonio AVILA ZARAGOZA, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20200149052
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: September 13, 2019
    Publication date: May 14, 2020
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190000932
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190000933
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190002890
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS