Patents by Inventor Lin Tung GUEY

Lin Tung GUEY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240024506
    Abstract: This disclosure relates to mRNA therapy for the treatment of propionic acidemia (PA). mRNAs for use in the invention, when administered in vivo, encode human propionyl-CoA carboxylase alpha (PCCA) and/or human propionyl-CoA carboxylase beta (PCCB), and isoforms thereof, functional fragments thereof, and fusion proteins comprising PCCA and/or PCCB. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of propionyl-CoA carboxylase (PCC) expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of disease-associated toxic metabolites associated with deficient PCCA or PCCB activity, in subjects.
    Type: Application
    Filed: June 1, 2023
    Publication date: January 25, 2024
    Inventors: Lei Jiang, Lin Tung Guey, Paolo G. V. Martini, Vladimir Presnyak
  • Publication number: 20230323371
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: April 6, 2023
    Publication date: October 12, 2023
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Patent number: 11649461
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 16, 2023
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen G. Hoge, Kerry Benenato, Vladimir Presnyak, Iain Mcfadyen, Ellalahewage Sathyajith Kumarasinghe, Xuling Zhu, Lin Tung Guey, Staci Sabnis
  • Publication number: 20230112986
    Abstract: The invention relates to mRNA therapy for the treatment of Acute Intermittent Porphyria (AIP). mRNAs for use in the invention, when administered in vivo, encode human porphobilinogen deaminase (PBGD), isoforms thereof, functional fragments thereof, and fusion proteins comprising PBGD. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to affect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PBGD expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient PBGD activity in subjects, namely porphobilinogen and aminolevulinate (PBG and ALA).
    Type: Application
    Filed: July 21, 2022
    Publication date: April 13, 2023
    Applicants: ModernaTX, Inc., Fundacion Para La Investigacion Medica Aplicada
    Inventors: Paolo MARTINI, Stephen HOGE, Kerry BENENATO, Vladimir PRESNVAK, Lei JIANG, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Antonio FONTANELLAS ROMA, Pedro BERRAONDO LOPEZ, Matias Antonio AVILA ZARAGOZA, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20220370354
    Abstract: This disclosure relates to mRNA therapy for the treatment of methylmalonic acidemia (MMA). mRNAs for use in the invention, when administered in vivo, encode methylmalonyl-CoA mutase (MUT). mRNA therapies of the disclosure increase and/or restore deficient levels of MUT expression and/or activity in subjects.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 24, 2022
    Inventors: Tal Zaks, Kelly Lindert, Lin Tung Guey
  • Publication number: 20220265856
    Abstract: This disclosure relates to mRNA therapy for the treatment of propionic acidemia (PA). mRNAs for use in the invention, when administered in vivo, encode human propionyl-CoA carboxylase alpha (PCCA) and/or human propionyl-CoA carboxylase beta (PCCB), and isoforms thereof, functional fragments thereof, and fusion proteins comprising PCCA and/or PCCB. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of propionyl-CoA carboxylase (PCC) expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of disease-associated toxic metabolites associated with deficient PCCA or PCCB activity, in subjects.
    Type: Application
    Filed: November 21, 2018
    Publication date: August 25, 2022
    Applicant: ModernaTX, Inc.
    Inventors: Lei Jiang, Lin Tung Guey, Paolo G.V. Martini, Vladimir Presnyak
  • Publication number: 20220071915
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Application
    Filed: January 21, 2021
    Publication date: March 10, 2022
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Patent number: 10993918
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 4, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Publication number: 20200149052
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: September 13, 2019
    Publication date: May 14, 2020
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20200085916
    Abstract: The invention relates to mRNA therapy for the treatment of Acute Intermittent Porphyria (AIP). mRNAs for use in the invention, when administered in vivo, encode human porphobilinogen deaminase (PBGD), isoforms thereof, functional fragments thereof, and fusion proteins comprising PBGD. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to affect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PBGD expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient PBGD activity in subjects, namely porphobilinogen and aminolevulinate (PBG and ALA).
    Type: Application
    Filed: May 18, 2017
    Publication date: March 19, 2020
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Lei Jiang, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Antonio Fontanellas Roma, Pedro Berraondo Lopez, Matias Antonio Avila Zaragoza, Lin Tung Guey, Staci Sabnis
  • Patent number: 10519455
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 31, 2019
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen G. Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Xuling Zhu, Lin Tung Guey, Staci Sabnis
  • Patent number: 10494636
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 3, 2019
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen G. Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Xuling Zhu, Lin Tung Guey, Staci Sabnis
  • Publication number: 20190175517
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Application
    Filed: May 18, 2017
    Publication date: June 13, 2019
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Publication number: 20190000933
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190002890
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190000932
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS